Detecting Instruction Cache for p.atfmm_awa,e p.:E

Keith D. Cooper

Platform Aware Compilation Timothy J. Harvey

Jeffrey A. Sandoval

Problem Solution th Instruction Cache?

C.ompiler dev.elopmen.t is expensive and Build a compiler that can automatically » Instruction cache optimizations: we can
time-consuming. Rapid development cycles adapt to future systems. limit code growth from loop unrolling and
for modern computing systems can render a . . L. ninlini
PULIng 5y o e Requires automatic characterization of function inlining
system obsolete before a mature compiler is . e e
even available performance-related system properties * Data cache optimizations: it’s helpful to
' — Hardware: memory hierarchy, know which levels of cache are unified
> 7 available registers, instruction latency, (i.e., data and instructions)
instruction level parallelism,etc. * Exploiting under-utilization: under-

> — Software: compiler strengths/ utilized instruction cache can be seen as
weaknesses, OS bottlenecks, etc. an opportunity for additional code cloning
* This poster focuses on measuring a and specialization

processor’s instruction cache.

Detecting Instruction Cache

Instruction Cache on AMD Phenom 9750 Agena

Holding the dynamic instruction 1024
. . _ Varying the number of kernels in the 512
count constant while varying the The driver repeatedly Workinaset || working set changes the instruction 2 /
. . . . Ca"S kerne|S in the -l Cache footpnnt A= 256
static instruction count will s rp g
. . [
reveal the instruction cache. P o 64 4
32 L——
Theoretical Cache Behavior for i = 1 to N { k?];nslllg3 (v)vo;:{'k 1K 4K 16K 64K 256K 1M 4M 16M
next kernel(); next ernel - kernel 2: Instruction Footprint (bytes)
L1 L2 Main } } Instruction Cache on Intel Xeon E5530 Nehalem
Tg Cache Cache Memory _ / / 512
CIE) 256
= Each kernel updates the 2 128 /
next kernel global variable, 2 o ol
wrapping around to create a cycle. = vl
Memory Footprint :
16

1K 4K 16K 64K 256K 1M 4M 16M
Instruction Footprint (bytes)

Difficulties Detecting Unified Cache

® Hardwa re Accessing data in 3 Theoretical Disjoint Cache Behavior Unified Cache Test on AMD Phenom 9750 Agena
. v v 2048 =
. . e e e —— No Data Footprint » L1
— Must overwhelm instruction fetch disjoint data cache — IB;:fDe?t:Fggtgrrilr?t < 12?‘21 tg —— Fal
] - — Difference o S L3 ——
— Must fool branch prediction will not affect g L L2 Main e £ o /ﬁ’/f\
. . . 2 Cache Cache Memory S > 128 ! osasssausssspissabisssiai T
— Must detect unified caches instruction cache £ S O .
/ T 32 s
* Software performance, g8
. . 1K 4K 16K 64K 256K 1M 4M 16M
— Cannot precisely Control/measure code size Whlle acceSSIng Memory Footprint Instruction Footprint (bytes)
— Cannot eIiminate a” data 3CCesses data in a uniﬁed Theoretical Unified Cache Behavior Unified Cache Test on Intel Xeon E5530 Nehalem
i —— ey 512 p— .
)) —— No Data Footprint © L1
— Must scale as code size increases cache will cause ——— L2 Data Footprint S b2 — Ih
conflicts between = Difference g g s — T
° Analysis _ _ = L1 L2 Main & £ 128
Instruction and “E’ Cache Cach¢ Memory :q‘:) 3
— Must automatically interpret noisy or = \ 5 g 64
data accesses. - © R .
unexpected results 32
1K 4K 16K 64K 256K 1M 4M 16M

Memory Footprint Instruction Footprint (bytes)

Automatic Analxsis What is effective size?

Step-Approximation for AMD Phenom 9750 Agena

We cannot rely on human intervention for analysis, 1024 —_— _ Effective cache size is the total cache
. . 2 Driginal —— - . . :
because doing so would require an expert and may 5 512 Approximation |- 7 capacity that is available for program use
become subjective in the presence of ill-formed data. £ fZ: before performance begins to degrade.
>
. 2 . :
* Insights: we know the expected shape of the graph = & [Effective cache size may be less than actual
L . TR O pl— cache size for several reasons:
* Solution: modified polygonal approximation 1K 4K 16K 64K 256K 1M 4M 16M
Instruction Footprint (bytes) * Inclusive caches
_ Captures the general trend Step-Approximation for Intel Xeon E5530 Nehalem .
. . . : 512 —————— Multi-core shared caches
— ldentifies precise transition points 2 Origing
_c.; 256 } Approximation /,.....k — o UnlﬁEd CaCheS
— Interprets conservatively @ 128 - /
* Perez, J.-C., and Vidal, E. Optimum polygonal approximation of digitized curves. Pattern g 64 ' ==—Jf ® PhYSicaI address mapplng
Recogn. Lett. 15, 8 (1994), 743-750. S 39 *j
©
=) ;
16

1K 4K 16K 64K 256K 1M 4M 16M
Instruction Footprint (bytes)

This work is funded by the Defense Advanced Research Projects Agency through AFRL Contract
FA8650-09-C-7915 with Rice University. The opinions and findings in this document do not
necessarily reflect the views of either the United States Government or of Rice University.

