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C.ompiler dev.elopmen.t is expensive and Build a compiler that can automatically » Instruction cache optimizations: we can
time-consuming. Rapid development cycles adapt to future systems. limit code growth from loop unrolling and
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> — Software: compiler strengths/ utilized instruction cache can be seen as
weaknesses, OS bottlenecks, etc. an opportunity for additional code cloning
* This poster focuses on measuring a and specialization

processor’s instruction cache.

Detecting Instruction Cache

Instruction Cache on AMD Phenom 9750 Agena
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Difficulties Detecting Unified Cache
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Automatic Analxsis What is effective size?

Step-Approximation for AMD Phenom 9750 Agena
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