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Abstract
High-level loop transformations are a key instrument in mapping
computational kernels to effectively exploit resources in modern
processor architectures. However, determining appropriate compo-
sitions of loop transformations to achieve this remains a signif-
icantly challenging task; current compilers may achieve signifi-
cantly lower performance than hand-optimized programs. To ad-
dress this fundamental challenge, we first present a convex char-
acterization of all distinct, semantics-preserving, multidimensional
affine transformations. We then bring together algebraic, algorith-
mic, and performance analysis results to design a tractable opti-
mization algorithm over this highly expressive space. The frame-
work has been implemented and validated experimentally on a
representative set of benchmarks run on state-of-the-art multi-core
platforms.

Categories and Subject Descriptors D 3.4 [Programming lan-
guages]: Processor — Compilers; Optimization

General Terms Algorithms; Performance

Keywords Compilation; Compiler Optimization; Parallelism;
Loop Transformations; Affine Scheduling

1. Introduction
Loop nest optimization continues to drive much of the ongoing
research in the fields of optimizing compilation [8, 27, 33], high-
level hardware synthesis [22], and adaptive library generation [19,
47]. Loop nest optimization attempts to map the proper granularity
of independent computation to a complex hierarchy of memory,
computing, and interconnection resources. Despite four decades
of research and development, it remains a challenging task for
compiler designers and a frustrating experience for programmers
— the performance gap, between expert-written code for a given
machine and that optimized and parallelized automatically by a
compiler, is widening with newer generations of hardware.
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One reason for this widening gap is due to the way loop nest
optimizers attempt to decompose the global optimization problem
into simpler sub-problems. Recent results in feedback-directed op-
timization [33] indicate that oversimplification of this decomposi-
tion is largely responsible for the failure. The polyhedral compiler
framework provides a convenient and powerful abstraction to apply
composite transformations in one step [20, 24]. However, the space
of affine transformations is extremely large. Linear optimization in
such a high-dimensional space raises complexity issues and its ef-
fectiveness is limited by the lack of accurate profitability models.
This paper makes fundamental progresses in the understanding

of polyhedral loop nest optimization. It is organized as follows.
Section 2 formalizes the optimization problem and contributes
a complete, convex characterization of all distinct, semantics-
preserving, multidimensional affine transformations. Focusing on
one critical slice of the transformation space, Section 3 pro-
poses a general framework to reason about all distinct, semantics-
preserving, multidimensional statement interleavings. Section 4
presents a complete and tractable optimization algorithm driven by
the iterative evaluation of these interleavings. Section 5 presents
experimental data. Related work is discussed in Section 6.

2. Problem Statement and Formalization
The formal semantics of a language allows the definition of pro-
gram transformations and equivalence criteria to validate these
transformations. Denotational semantics can be used as an abstrac-
tion to decide on the functional equivalence of two programs. But
operational semantics is preferred to express program transforma-
tions themselves, especially in the case of transformations impact-
ing the detailed interaction with particular hardware. Program op-
timization amounts to searching for a particular point in a space of
semantics-preserving transformations. When considering optimiz-
ing compilation as a whole, the space has no particular property
that makes it amenable to any formal characterization or optimiza-
tion algorithm. As a consequence, compilers decompose the prob-
lem into sub-problems that can be formally defined, and for which
complexity results and effective optimization algorithms can be de-
rived.
The ability to encompass a large set of program transformations

into a single, well understood optimization problem is the strongest
asset of the polyhedral compilation model. In the polyhedral model,
transformations are validated against dependence relations among
dynamic instances of individual statements of a loop nest. The de-
pendence relation is the denotational abstraction that defines func-
tional equivalence. This dependence relation may not be statically



computable, but (conservative) abstractions may be (finitely) rep-
resented through systems of affine inequalities, or unions of para-
metric polyhedra [2, 16, 22]. Two decades of work in polyhedral
compilation has demonstrated that the main loop nest transforma-
tions can be modeled and effectively constructed as multidimen-
sional affine schedules, mapping dynamic instances of individual
statements to lexicographically sorted vectors of integers (or ratio-
nal numbers) [6, 8, 17, 20, 24, 38]. Optimization in the polyhedral
model amounts to selecting a good multidimensional affine sched-
ule for the program.
In this paper, we make the following contributions:

• We take this well defined optimization problem, and provide
a complete, convex formalization for it. This convex set of
semantics-preserving, distinct, affine multidimensional sched-
ules opens the door to more powerful linear optimization algo-
rithms.

• We propose a decomposition of the general optimization prob-
lem over this convex polyhedron into sub-problems of much
lower complexity, introducing the powerful fusibility concept.
The fusibility relation generalizes the legality conditions for
loop fusion, abstracting a large set of multidimensional, affine,
fusion-enabling transformations.

• We demonstrate that exploring fusibility opportunities in a loop
nest reduces to the enumeration of total preorders, and to the
existence of pairwise compatible loop permutations. We also
study the transitivity of the fusibility relation.

• Based on these results, we design a multidimensional affine
scheduling algorithm targeted at achieving portable high per-
formance across modern processor architectures.

• Our approach has been fully implemented in a source-to-source
compiler and validated on representative benchmarks.

2.1 Loop optimization challenge
Let us illustrate the challenge of loop optimization from the
standpoint of performance portability through a simple example,
ThreeMatMat, shown in Figure 1. We seek the best combination
of loop transformations—expressed as a multidimensional affine
schedule—to optimize a sequence of three matrix-products for a
given target platform.

for (i1 = 0; i1 < N; ++i1)
for (j1 = 0; j1 < N; ++j1)

for (k1 = 0; k1 < N; ++k1)
R : C[i1][j1] += A[i1][k1] * B[k1][j1];
for (i2 = 0; i2 < N; ++i2)
for (j2 = 0; j2 < N; ++j2)

for (k2 = 0; k2 < N; ++k2)
S : F[i2][j2] += D[i2][k2] * E[k2][j2];
for (i3 = 0; i3 < N; ++i3)
for (j3 = 0; j3 < N; ++j3)

for (k3 = 0; k3 < N; ++k3)
T : G[i3][j3] += C[i3][k3] * F[k3][j3];

Figure 1. ThreeMatMat:C = AB, F = DE, G=CF

We set N = 512 and computed 5 different versions of ThreeMat-
Mat using combinations of loop transformations including tiling.
We experimented on two platforms (quad-Xeon E7450 and quad-
Opteron 8380), using the Intel ICC 11.0 compiler with aggressive
optimization flags. The framework developed in this paper enables
us to outperform ICC by a factor 2.28× and 1.84×, respectively,
for the Intel and AMD machines. We observe that the best version
found depends on the target machine: for the Intel system, the best
found loop fusion structure is shown in Figure 2(b), on which fur-
ther polyhedral tiling and parallelization were applied (not shown

in Figure 2). But on the AMD machine, distributing all statements
and individually tiling them performs best, 1.23× better than 2(b).
The efficient eecution of a computation kernel on a modern

multi-core architecture requires the synergistic operation of many
hardware resources, via the exploitation of thread-level parallelism;
the memory hierarchy, including prefetch units, different cache lev-
els, memory buses and interconnect; and all available computa-
tional units, including SIMD units. Because of the very complex
interplay between all these components, it is currently infeasible
to guarantee at compile-time which set of transformatios leads to
maximal performance.
To maximize performance, one must carefully tune for the

trade-off between the different levels of parallelism and the us-
age of the local memory components. This can be performed via
loop fusion and distribution choices, that drive the success of subse-
quent optimizations such as vectorization, tiling or parallelization.
It is essential to adapt the fusion structure to the program and target
machine. However, the state-of-the-art provides only rough models
of the impact of loop transformations on the actual execution. To
achieve performance portability across a wide variety of architec-
tures, empirical evaluation of several fusion choices is an alterna-
tive, but requires the construction and traversal of a search space
of all possible fusion/distribution structures. To make the problem
sound and tractable, we develop a complete framework to reason
and optimize in the space of all semantics-preserving combinations
of loop structures.

2.2 Background and notation
The polyhedral model is a flexible and expressive representation
for loop nests. It captures the linear algebraic structure of statically
predictable control flow, where loop bounds and conditionals are
affine functions of the surrounding loop iterators and invariants
(a.k.a. parameters, unknown at compilation time) [15, 20]; but it
is not restricted to static control flow [2, 4].
The set of all executed instances of each statement is called an

iteration domain. These sets are represented by affine inequalities
involving the loop iterators and the global variables. Considering
the ThreeMatMat example in Figure 1, the iteration domain of R is:

DR = {(i, j,k) ∈ Z
3 | 0≤ i< N∧0≤ j < N∧0≤ k < N}

DR is a (parametric) integer polyhedron, that is a subset of Z3. The
iteration vector !xR is the vector of the surrounding loop iterators,
for R it is (i, j,k) and takes value in DR.
In this work, a given loop nest optimization is defined by a

multidimensional affine schedule, which is an affine form of the
loop iterators and global parameters [18, 20].

DEFINITION 1 (Affine multi-dimensional schedule). Given a state-
ment S, an affine schedule ΘS of dimension m is an affine form
on the d outer loop iterators !xS and the p global parameters !n.
ΘS ∈ Zm×(d+p+1) can be written as:

ΘS(!xS) =







θ1,1 . . . θ1,d+p+1
...

...
θm,1 . . . θm,d+p+1






.





!xS
!n
1





The scheduling function ΘS maps each point in D S with a mul-
tidimensional timestamp of dimension m, such that in the trans-
formed code the instances of S defined in D S will be executed fol-
lowing the lexicographic ordering of their associated timestamp.
Multidimensional timestamps can be seen as logical clocks: the
first dimension corresponds to days (most significant), next one is
hours (less significant), the third to minutes, and so on. Note that
every static control program has a multidimensional affine sched-
ule [18], and that any composition of loop transformation can be



represented in the polyhedral representation [20, 50]. The full pro-
gram optimization is a collection of affine schedules, one for each
syntactical program statement. Even seemingly non-linear trans-
formations like loop tiling (a.k.a. blocking) and unrolling can be
modeled [20, 38].
Finally, syntactic code is generated back from the polyhe-

dral representation on which the optimization has been applied;
CLOOG is the state-of-the art algorithm and code generator [3] to
perform this task.

2.3 Semantics-preserving transformations
A program transformation must preserve the semantics of the pro-
gram. The legality of affine loop nest transformations is defined at
the level of dynamic statement instances. As a starting point for
transformation space pruning, we build a convex, polyhedral char-
acterization of all semantics-preserving multidimensional affine
schedules for a loop nest.
Two statements instances are in dependence relation if they

access the same memory cell and at least one of these accesses is
a write. Given two statements R and S, a dependence polyhedron
DR,S is a subset of the Cartesian product of DR and D S: DR,S
contains all pairs of instances 〈!xR,!xS〉 such that !xS depends on !xR,
for a given array reference. Hence, for a transformation to preserve
the program semantics, it must ensure that

ΘR(!xR) ≺ΘS(!xS),

where ≺ denotes the lexicographic ordering.1
To capture all program dependences we build a set of depen-

dence polyhedra, one for each pair of array references accessing
the same array cell (scalars being a particular case of array), thus
possibly building several dependence polyhedra per pair of state-
ments. The polyhedral dependence graph is a multi-graph with one
node per statement, and an edge eR→S is labeled with a dependence
polyhedron DR,S, for all dependence polyhedra.
The schedule constraints imposed by the precedence constraint

are expressible as finding all non-negative functions over the de-
pendence polyhedra [17]. It is possible to express the set of affine,
non-negative functions over DR,S thanks to the affine form of the
Farkas lemma [39].

LEMMA 1 (Affine form of Farkas Lemma). Let D be a nonempty
polyhedron defined by the inequalities A !x + !b ≥ !0. Then any
affine function f (!x) is non-negative everywhere in D iff it is a
positive affine combination:

f (!x) = λ0+!λT (A!x+!b), with λ0 ≥ 0 and!λT ≥!0.

λ0 and!λT are called Farkas multipliers.

Since it is a necessary and sufficient characterization, the Farkas
Lemma offers a loss-less linearization of the constraints from the
dependence polyhedron into direct constraints on the schedule co-
efficients. For instance considering the first time dimension (the
first row of the scheduling matrices, that is, we set p = 1 in the
following equation), to preserve the precedence relation we have:

∀DR,S, ∀〈!xR,!xS〉 ∈ DR,S, ΘSp(!xS)−ΘRp(!xR) ≥ δ
D R,S
p (1)

δ
D R,S
p ∈ {0,1}

We resort to variable δD R,S
1 to model the dependence satisfaction.

A dependence DR,S can be either weakly satisfied when δ
D R,S
1 = 0,

permitting ΘS1(!xS) = ΘR1 (!xR) for some instances in dependence, or

1 (a1, . . . ,an) ≺ (b1, . . . ,bm) iff there exists an integer 1≤ i≤ min(n,m) s.t.
(a1, . . . ,ai−1) = (b1, . . . ,bi−1) and ai < bi.

strongly satisfied when δD R,S
1 = 1, enforcing strict precedence (at

the first time dimension) for all instances in dependence.
This model extends to multidimensional schedules, observing

that once a dependence has been strongly satisfied, it does not con-
tribute to the semantics preservation constraints for the subsequent
time dimensions. Furthermore, for a schedule to preserve seman-
tics, it is sufficient for every dependence to be strongly satisfied at
least once. Following these observations, one may state a sufficient
condition for semantics preservation (adapted from Feautrier’s for-
malization [18]).

LEMMA 2 (Semantics-preserving affine schedules). Given a set of
affine schedules ΘR,ΘS . . . of dimension m, the program semantics
is preserved if:

∀DR,S, ∃p ∈ {1, . . . ,m}, δD R,S
p = 1 ∧

(

∀ j < p, δD R,S
j = 0

)

∧
(

∀ j ≤ p,∀〈!xR,!xS〉 ∈ DR,S, Θ
S
j (!xS)−ΘRj (!xR) ≥ δ

D R,S
j

)

The proof directly derives from the lexicopositivity of depen-
dence satisfaction [18].
Regarding the schedule dimensionality m, it is sufficient to pick

m= d to guarantee the existence of a legal schedule (the maximum
program loop depth is d). Obviously, any schedule implementing
the original execution order is a valid solution [18].
This formalization involves an “oracle” to select the dimension

p at which each dependence should be strongly satisfied. To avoid
the combinatorial selection of this dimension, we conditionally
nullify constraint (1) on the schedules when the dependence was
strongly satisfied at a previous dimension. To nullify the constraint,
we may always pick a lower bound lb for ΘSk(!xS)−ΘRk (!xR). With-
out any loss of generality, we assume (parametric) loop bounds are
non-negative. Vasilache [44] proposed a method to evaluate this
lower bound when the coefficients of Θ are bounded: lb is greater
or equal to the sum of the maximal coefficient values times the
(possibly parametric) loop bounds. We can always select a large
enough K such that [32]

ΘSk(!xS)−ΘRk (!xR) ≥−K.!n−K (2)

Note that this lower bound can also be linearized into constraints
on ΘR,ΘS thanks to the Farkas Lemma. To obtain the schedule
constraints we reinsert this lower bound in the previous formula-
tion [44], such that either the dependence has not been previously
strongly satisfied and then the lower bound is (1), or it has been
and the lower bound is (2). We thus derive the convex form of
semantics-preserving affine schedules of dimension m for a pro-
gram as a corollary of Lemma 2.

LEMMA 3 (Convex form of semantics-preserving affine schedules).
Given a set of affine schedules ΘR,ΘS . . . of dimension m, the pro-
gram semantics is preserved if the three following conditions hold:

(i) ∀DR,S, ∀p, δ
D R,S
p ∈ {0,1}

(ii) ∀DR,S,
m
∑
p=1

δ
D R,S
p = 1 (3)

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈!xR,!xS〉 ∈ DR,S, (4)

ΘSp(!xS)−ΘRp(!xR) ≥−
p−1

∑
k=1

δ
D R,S
k .(K.!n+K)+δ

D R,S
p

One can then build the set Lm of all (bounded) legal affine mul-
tidimensional schedules of dimension m by encoding the affine
constraints given by Lemma 3 into a problem with m binary vari-
ables per dependence and m× (dim(!xS) + dim(!n) + 1) variables
per statement S. For an efficient construction of the constraints for



semantics-preservation, one should proceed dependence by depen-
dence. Building the constraints of the form of (4) is done for each
dependence, then the Farkas multipliers are eliminated for instance
with a scalable Fourier-Motzkin projection technique [33]. The set
of constraints obtained for each schedules are then intersected, and
the process is replicated for all dimensions.

2.4 Finding a schedule for the program
We achieved completeness: an Integer Linear Program operating
on Lm can exhibit the best affine schedule according to a given
objective function. Yet solving an arbitrary ILP on Lm is NP-
complete [39]. Given the high dimensionality of this space on
the larger loop nests, our convex formalization induces a serious
tractability challenge. To address this challenge and reduce the
complexity effect of the problem, we propose to decouple the
optimization into two sub-problems:

1. the problem of selecting how statements are interleaved — this
is traditionally viewed as selecting a proper combination of loop
fusion, loop distribution and code motion;

2. the problem of selecting an affine schedule compatible with the
statement interleaving selected at the previous step.

Selecting a statement interleaving that maximizes a fusion cri-
terion is still an NP-complete problem in general [12], but its com-
plexity is dramatically reduced from the high-dimensionality linear
optimization problem. We focus our efforts on this simplified prob-
lem.

2.5 Encoding statement interleaving
Fusion and fusibility of statements In the polyhedral model, loop
fusion is characterized by the fine-grain interleaving of statement
instances [6, 24]. Two statements are fully distributed if the range
of the timestamps associated to their instances never overlap. Syn-
tactically, this results in distinct loops to traverse the domains. One
may define fusion as the negation of the distribution criterion. For
such a case we say that two statements R,S are fused if there exists
at least one pair of iterations for which R is scheduled before S, and
another pair of iterations for which S is scheduled before R. This is
stated in Definition 2.

DEFINITION 2 (Fusion of two statements). Consider two state-
ments R,S and their schedules ΘR and ΘS. R and S are said to
be fused at level p if, ∀k ∈ {1 . . . p}, there exists at least three dis-
tinct executed instances !xR, !xR′ and !xS such that

ΘRk (!xR) ≤ΘSk(!xS) ≤ΘRk (!xR
′). (5)

We now propose an encoding of Definition 2 such that we
can determine, from the dependence graph, if it is possible to
find a schedule leading to fuse the statements whatever additional
transformation(s) may be required to enable fusion. This is called
fusibility. The purpose is to exhibit sufficient affine constraints that
can be added to L to keep in the solution space only the schedules
which correspond to fusing the considered statements.
We rely on the fact that the first and last scheduled instances

of R and S will conform to Definition 2 if the two statements are
fused. These specific instances belong to the set of vertices of DR
and D S. Thus, to determine whether R and S are fusable or not, it
is sufficient to enumerate all vertices of DR and D S, and for each
possible combinations of vertices plug their actual value into Eq (5)
— leading to an affine constraint on the schedule coefficients —
and test for the existence of a solution in the space of all semantics-
preserving schedules L augmented with the new constraint. As
soon as there is a solution to one of the problems formed, then the
statements are fusable. This is stated in Definition 3.

DEFINITION 3 (Generalized fusibility check). Given vR (resp. vS)
the set of vertices of DR (resp. D S). R and S are fusable at level
p if, ∀k ∈ {1 . . . p}, there exist two semantics-preserving schedules
ΘRk and Θ

S
k such that

∃(!x1,!x2,!x3) ∈ vR× vS× vR, ΘRk (!x1) ≤ΘSk(!x2) ≤ΘRk (!x3)

Note that in practice, the number of vertices of an iteration do-
main is often small (from 2 to 10), hence the number of cases to be
checked is limited. We also present in Section 4.2 a specialization
of this test to the case of non-negative schedule coefficients, which
removes the need to enumerate the vertices.

Multidimensional statement interleaving Thanks to Lemma 3
and Definition 3, we can determine if a set of statements can be
fused at a given level while preserving semantics. For our optimiza-
tion problem, we are interested in building a space representing all
ways to interleave the program statements.
To reason about statement interleaving, one may associate a

vector ρS of dimension d (d being the maximal loop depth in the
program) to each statement S, and order those vectors lexicograph-
ically. If some statement S is surrounded by less than d loops, ρS is
post-padded with zeroes. Figure 2 gives an example of three pos-
sible optimizations for the ThreeMatMat example, as defined by
different configurations of the ρ vectors. Note that to implement
the interleaving specified by ρ several loop permutations may be
required.
There exist an analogy between ρS and a standard encoding

of multidimensional affine schedules where statement interleaving
vectors are made explicit: for each statement S, one may constrain
the rows of ΘS to alternate between constant forms of a vector of
dimension d+ 1 (usually denoted β [20]) and affine forms of the
iteration and global parameter vectors. This 2d + 1-dimensional
encoding does not incur any loss of expressiveness [11, 18, 20, 24].
However in this paper we explicitly give ρ important structural
properties of the transformed loop nest:

1. if ρRk = ρSk , ∀k ∈ {1, . . . , p} then the statements share (at least)
p common loops;

2. if ρRp /= ρSp, then the statements do not share any common loop
starting at depth p. We thus have

ρRp /= ρSp ⇒ ρRk /= ρSk , ∀k ∈ {p+1, . . . ,m}

Our objective to model all possible interleavings is to build a
space containing all ρ vectors for which there exists a semantics-
preserving affine transformation that implements the specified in-
terleaving. To guarantee that the solution space contains only use-
ful points, we need to address the problem that several choices of
ρ vectors represent the same multidimensional statement interleav-
ing. Intuitively, the problem arises because there exists an infinite
number of vectors which have the same lexicographic ordering. In
particular, the order is invariant to translation of all coefficients of
ρ at a given dimension, or by multiplication of all its coefficients
by a non-negative constant. To abstract away these equivalences,
we now formally define the concept of multidimensional statement
interleaving.

DEFINITION 4 (Multidimensional statement interleaving). Consider
a set of statements S enclosed within at most d loops and their as-
sociated vectors R = {ρS}S∈S . For a given k ∈ {1, . . . ,d}, the
one-dimensional statement interleaving of S at dimension k de-
fined by R is the partition of S according to the coefficients ρSk .
The multidimensional statement interleaving of S at dimension k
defined by R is the list of partitions at dimension k.



for (t1 = 0; t1 < N; ++t1) {
for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

R C[t3][t1] += A[t3][t5] * B[t5][t1];
for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

S F[t1][t3] += D[t1][t5] * E[t5][t3];
for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

T G[t5][t3] += C[t5][t1] * F[t1][t3];
}

LR =





0 1 0
1 0 0
0 0 1



 LS =





1 0 0
0 1 0
0 0 1



 LT =





0 0 1
0 1 0
1 0 0





ρR =





0
0
0



 ρS =





0
1
1



 ρT =





0
2
2





for (t1 = 0; t1 < N; ++t1)
for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5) {

S F[t1][t3] += D[t1][t5] * E[t5][t3];
R C[t1][t3] += A[t1][t5] * B[t5][t3];

}
for (t1 = 0; t1 < N; ++t1)
for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

T G[t1][t3] += C[t1][t3] * F[t3][t5];

LR =





1 0 0
0 1 0
0 0 1



 LS =





1 0 0
0 1 0
0 0 1



 LT =





1 0 0
0 1 0
0 0 1





ρR =





0
0
0



 ρS =





0
0
0



 ρT =





1
1
1





for (t1 = 0; t1 < N; ++t1)
for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5)

R C[t1][t3] += A[t1][t5] * B[t5][t3];
for (t1 = 0; t1 < N; ++t1)
for (t3 = 0; t3 < N; ++t3)
for (t5 = 0; t5 < N; ++t5) {

S F[t3][t1] += D[t3][t5] * E[t5][t1];
T G[t5][t1] += C[t5][t3] * F[t3][t1];

}

LR =





1 0 0
0 1 0
0 0 1



 LS =





0 1 0
1 0 0
0 0 1



 LT =





0 0 1
1 0 0
0 1 0





ρR =





0
0
0



 ρS =





1
1
1



 ρT =





1
1
1





(a) (b) (c)
Figure 2. Three possible legal transformations forC = AB, F = DE, G=CF

The structural properties of statement interleaving indicate that
equivalence classes at dimension k correspond to statements that
share common loops at depth k in the transformed loop nest.

DEFINITION 5 (Total preorder). A total preorder on a set S is a
relation ! which is reflexive, transitive, and such that for any pair
of elements (S1,S2) ∈ S , either S1! S2 or S2! S1 or both.

An important result is that any preorder of a set S is isomorphic
to a partial order of some equivalence classes of S . Applying this
result to the structural properties of statement interleavings yields
the following lemma.

LEMMA 4 (Structure of statement interleavings). Each one-dimen-
sional statement interleaving corresponds to a unique total pre-
order of the statements and reciprocally.

3. Semantics-Preserving Statement Interleavings
We now propose a convex, complete characterization of multidi-
mensional statement interleavings which serves as a basis to encode
the space of valid ρ vectors.

3.1 Convex encoding of total preorders
We first present a solution for the problem of total preorders of
scalar elements, that corresponds to one-dimensional interleavings.

One-dimensional case For a given set of n elements, we define
O as the set of all and distinct total preorders of its n elements. The
key problem is to model O as a convex polyhedron.2
To the best of our knowledge, uniqueness of orderings cannot

be modeled in a convex fashion on a set with a linear number of
variables. We propose to model the ordering of two elements i, j
with three binary decision variables, defined as follows. pi, j = 1 iff
i precedes j, ei, j = 1 iff i equals j and si, j = 1 iff i succeeds j. To
model the entire set, we introduce three binary variables for each
ordered pair of elements, i.e., all pairs (i, j) such that 1≤ i< j≤ n.
This models a set with 3×n(n−1)/2 variables.







0≤ pi, j ≤ 1
0≤ ei, j ≤ 1
0≤ si, j ≤ 1







2 This problem is not a straight adaptation of standard order theory: we look
for the set of all distinct total preorders of n elements, in contrast to classical
work defining counting functions of this set [41].

For instance, the outer-most interleaving ρR1 = 0, ρS1 = 0, ρT1 =
1 of Figure 2(b) is represented by:

eR,S = 1, eR,T = 0, eS,T = 0
pR,S = 0, pR,T = 1, pS,T = 1
sR,S = 0, sR,T = 0, sS,T = 0

From there, one may easily recompute the corresponding total pre-
order {ρR1 = 0,ρS1 = 0,ρT1 = 1}, e.g., by computing the lexico-
graphic minimum of a system W of 3 non-negative variables that
replicate the ordering defined by all pi, j , ei, j and si, j.
The first issue is the consistency of the model: an inconsis-

tent preorder would make W infeasible, e.g., setting e1,2 = 1 and
p1,2 = 1. The second issue is the totality of the relation. These two
conditions can be merged into the the following equality, capturing
both mutual exclusion and totality:

pi, j + ei, j + si, j = 1 (6)

To simplify the system, we immediately get rid of the si, j vari-
ables, thanks to (6). We also relax (6) to get:

pi, j + ei, j ≤ 1

Mutually exclusive decision variables capture the consistency
of the model for a single pair of elements. However, one needs to
insert additional constraints to capture transitivity.
To enforce transitivity, the following rule must hold true for all

triples of statements (i, j,k):

ei, j = 1∧ ei,k = 1⇒ e j,k = 1.

Similarly, we have:

ei, j = 1∧ e j,k = 1⇒ ei,k = 1.

These two rules set the basic transitivity of e variables. Since
we are dealing with binary variables, the implications can be easily
modeled as affine constraints:

{

∀k ∈] j,n], ei, j + ei,k ≤ 1+ e j,k
ei, j + e j,k ≤ 1+ ei,k

}

Slightly more complex transitivity patterns are also required.
For instance, we also have transitivity conditions imposed by a
connection between the value for some e coefficients and some p
ones. For instance, i< j and j = k implies i< k. The general rules



for those cases are:
ei, j ∧ pi,k ⇒ p j,k
ei, j ∧ p j,k ⇒ pi,k
ek, j ∧ pi,k ⇒ pi, j

These three rules set the complex transitivity between the p and
e variables. They can be modeled equivalently by following affine
constraints:







∀k ∈] j,n] ei, j + pi,k ≤ 1+ p j,k
ei, j + p j,k ≤ 1+ pi,k

∀k ∈]i, j[ ek, j + pi,k ≤ 1+ pi, j







(7)

Generalizing this reasoning, we collect all constraints to enforce
the transitivity of the total preorder relation. Those constraints are
gathered in the following system, for 1 ≤ i < j < n, defining the
convex set of all, distinct total preorders of n elements O :



































































































0≤ pi, j ≤ 1
}

Variables are
binary0≤ ei, j ≤ 1

pi, j + ei, j ≤ 1
}

Relaxed mutual
exclusion

∀k ∈] j,n] ei, j + ei,k ≤ 1+ e j,k
}

Basic transitivity
on eei, j + e j,k ≤ 1+ ei,k

∀k ∈]i, j[ pi,k + pk, j ≤ 1+ pi, j
}

Basic transitivity
on p

∀k ∈] j,n] ei, j + pi,k ≤ 1+ p j,k






Complex
transitivity
on p and e

ei, j + p j,k ≤ 1+ pi,k
∀k ∈]i, j[ ek, j + pi,k ≤ 1+ pi, j

∀k ∈] j,n] ei, j + pi, j + p j,k ≤ 1+ pi,k + ei,k







Complex
transitivity
on s and p

The following lemma is proved in [32, appendix A].

LEMMA 5 (Completeness and correctness of O ). The set O con-
tains one and only one element per distinct total preorder of n ele-
ments.

Multidimensional case O encodes all possible total preorders (or,
statement interleaving) for a given loop level. To extend to the mul-
tidimensional interleaving case, we first replicate O for each di-
mension of the ρ vectors. However, further constraints are needed
to also achieve consistency and uniqueness of the characterization
across dimensions. Intuitively, if a statement is distributed at di-
mension k, then for all remaining dimensions it will also be dis-
tributed. This is modeled with the following equations:

∀l > k,
(

pki, j = 1⇒ pli, j = 1
)

∧
(

ski, j = 1⇒ sli, j = 1
)

The final expression of the set I of all, distinct d-dimensional
statement interleavings is:






















∀k ∈ {1, . . . ,d}, constraints on O k
}

Total preorders
at level k

pki, j ≤ pk+1i, j
}

Statement interleaving
uniquenessek+1i, j + pk+1i, j ≤ pki, j + eki, j

It is worth noting that each O k contains numerous variables and
constraints; but when it is possible to determine — thanks to the
dependence graph for instance — that a given ordering of two el-
ements i and j is impossible, some variables and constraints are
eliminated. Our experiments indicate that these simplifications are
quite effective, improving the scalability of the approach signifi-
cantly.

3.2 Pruning for semantics preservation
The set I contains all and only distinct multi-level statement inter-
leavings. A pruning step is needed to remove all interleavings that
does not preserve the semantics. The algorithm proceeds level-by-
level, from the outermost to the innermost. Such a decoupling is
possible because we have encoded multi-dimensional interleaving
constraints in I , and that fusion at level k implies fusion at all pre-
ceding levels. In addition, leveraging Lemma 3 and Definition 3 we
can determine the fusibility of a set of statements at a given level
by exposing sufficient conditions for fusion on the schedules.
The general principle is to detect all the smallest possible sets

of p unfusable statements at level k, and for each of them, to update
I k by adding an affine constraint of the form:

ekS1,S2 + ekS2,S3 + . . .+ ekSp−1,Sp < p−1 (8)

thus preventing them (and any super-set of them) to be fused all to-
gether. We note F the final set with all pruning constraints for legal-
ity, F ⊆ I . A naive approach could be to enumerate all unordered
subsets of the n statements of the program at level k, and check
for fusibility, while avoiding to enumerate a super-set of an unfus-
able set. Instead, we leverage the polyhedral dependence graph to
reduce the test to a much smaller set of structures.
The first step of our algorithm is to build a graph G to facili-

tate the enumeration of sets of statements to test for, with one node
per statement. Sets of statements to test for fusibility will be repre-
sented as nodes connected by a path in that graph. Intuitively, if G
is a complete graph then we can enumerate all unordered subsets
of the n statements: enumerating all paths of length 1 gives all pairs
of statements by retrieving the nodes connected by a given path, all
paths of length 2 gives all triplets, etc. We aim at building a graph
with less edges, so that we lower the number of sets of statements
to test for fusibility. We first check the fusibility of all possible pairs
of statements, and add an edge between two nodes only if (1) there
is a dependence between them, and (2) either they must be fused to-
gether or they can be fused and distributed at that level. When two
statements must be fused, they are merged to ensure all schedule
constraints are considered when checking for fusibility.
The second step is to enumerate all paths of length ≥ 2 in the

graph. Given a path p, the nodes in p represent a set of statements
that has to be tested for fusibility. Each time they are detected to
be not fusable, all paths with p as a sub-path are discarded from
enumeration, and F k is updated with an equation in the form of
(8). The complete algorithm is shown in Figure 3.
Procedure buildLegalSchedules computes the space of legal

schedules L according to Lemma 3, for the set of statements given
in argument. Procedure mustDistribute tests for the emptiness
of L when augmented with fusion conditions from Definition 3
up to level d. If there is no solution in the augmented set of
constraints, then the statements cannot be fused at that level and
hence must be distributed. Procedure mustFuse checks if it is
legal to distribute the statements R and S. The check is performed
by inserting a splitter at level d. This splitter is a constant one-
dimensional schedule at level d, to force the full distribution of
statement instances at that level. If there is no solution in this set of
constraints, then the statements cannot be distributed at that level
and hence must be fused. Procedure canDistributeAndSwap tests
if it is legal to distribute R and S at level d and to execute S before
R. The latter is required to compute the legal values of the sR,S
variables at that level. The check is performed in a similar fashion
as with mustFuse, except the splitter is made to make R execute
after S. Finally procedure mergeNodes modifies the graph edges
after the merging of two nodes R and S such that: (1) if for T there
was an edge eT→R and not eT→S or vice-versa, eT→R is deleted,
and eS,T = 0, this is to remove triplets of trivially unfusable sets;



PruneIllegalInterleavings: Compute F
Input:
pdg: polyhedral dependence graph
n: number of statements
maxDepth: maximum loop depth

Output:
F : the space of semantics-preserving distinct interleavings

1 F ← I
2 un f usable ← /0
3 for d ← 1 to maxDepth do
4 G ← newGraph(n)
5 forall pairs of dependent statements R,S do
6 LR,S ← buildLegalSchedules({R,S}, pdg)
7 if mustFuse(LR,S, d) then
8 F d ← F d ∩ {edR,S = 1}
9 elseif mustDistribute(LR,S, d) then
10 F d ← F d ∩ {edR,S = 0}
11 else
12 if ¬ canDistributeAndSwap(LR,S, d) then
13 F d ← F d ∩ {edR,S + pdR,S = 1}
14 end if
15 addEdge(G, R, S)
16 end if
17 end for
18 forall pairs of statements R,S such that edR,S = 1 do
19 mergeNodes(G, R, S)
20 end for
21 for l ← 2 to n−1 do
22 forall paths p in G of length l such that

there is no prefix of p in un f usable do
23 L nodes(p) ← buildLegalSchedules({nodes(p)}, pdg)
24 if mustDistribute(L nodes(p), d) then
25 F d ← F d ∩ {∑p edpairs in p < l−1}
26 un f usable ← un f usable ∪ p
27 end if
28 end for
29 end for
30 end for

Figure 3. Pruning algorithm

(2) if there are 2 edges between T and RS, one of them is deleted
and its label is added to the remaining one existing label; (3) the
label of the edge eR→S is added to all remaining edges to/from RS,
and eR→S is deleted.

Applications The first motivation of building a separate search
space of multidimensional statement interleavings is to decouple
the selection of the interleaving from the selection of the trans-
formation that enables this interleaving. One can then focus on
building search heuristics for the fusion/distribution of statements
only, and through the framework presented in this paper compute a
schedule that respects this interleaving. Additional schedule prop-
erties such as parallelism and tilability can then be exploited with-
out disturbing the outer level fusion scheme. We present in the fol-
lowing a complete technique to optimize programs based on iter-
ative interleaving selection, leading to parallelized and tiled trans-
formed programs. This technique is able to automatically adapt to
the target framework, and successfully discovers the best perform-
ing fusion structure, whatever the specifics of the program, com-
piler and architecture.
Another motivation of building I is to enable the design of ob-

jective functions on fusion with the widest degree of applicability.
For instance one can maximize fusion at outer level, by maximiz-
ing ∑i, j e1i, j or similarly distribution by minimizing the same sum.
One can also assign a weight to the coefficients ei, j to favor fusion
for statements carrying more reuse, for instance. This formulation
allows to devise further pruning algorithms, offering to the opti-
mization the most relevant choice of legal interleavings for a given
target.

4. Optimizing for Locality and Parallelism
The previous sections define a general framework for multi-level
statement interleaving. We address now the problem of specializing
this framework to provide a complete optimization algorithm that
integrates tiling and parallelization, along with the possibility to
iteratively select different interleavings.
The optimization algorithm proceeds recursively, from the out-

ermost level to the innermost. At each level of the recursion, we
select the associated schedule dimension by instantiating its values.
Then, we build the set of semantics-preserving interleavings at that
level, pick one and proceed to the next level until a full schedule
is instantiated. We present in Section 4.1 additional conditions on
the schedules to improve the performance of the generated trans-
formation, by integrating parallelism and tilability as criteria. Then
we define in Section 4.2 a new fusibility criterion for a better per-
formance impact, while restricting it to non-negative schedule co-
efficients. In Section 4.3, we show how to construct the set of legal
interleaving without resorting on testing the set of legal schedules
for sets larger than a pair of statements. Finally we present the com-
plete optimization algorithm in Section 4.4.

4.1 Additional constraints on the schedules
Tiling (or blocking) is a crucial loop transformation for parallelism
and locality. Bondhugula et al. developed a technique to compute
an affine multidimensional schedule such that parallel loops are
brought to the outer levels, and loops with dependences are pushed
inside [6, 8]; at the same time, the number of dimensions that can
be tiled are maximized. We extend and recast their technique into
our framework.

Legality of tiling Tiling along a set of dimensions is legal if it is
legal to proceed in fixed block sizes along those dimensions: this
requires dependences not to be backward along those dimensions,
thus avoiding a dependence path going out of and coming back into
a tile; this makes it legal to execute the tile atomically. Irigoin and
Triolet showed that a sufficient condition for a schedule Θ to be
tilable [23], given R the dependence cone for the program, is that

Θ.R≥!0
In other words, this is equivalent to saying that all dependences
must be weakly satisfied for each dimension Θk of the schedule.
Such a property for the schedule is also known as Forward Commu-
nication Only property [21]. Returning to Lemma 3, it is possible to
add an extra condition such that the p first dimensions of the sched-
ules are permutable, a sufficient condition for the p first dimensions
to be tilable. This translates into the following additional constraint
on schedules, to enforce permutability of schedule dimensions.

DEFINITION 6 (Permutability condition). Given two statements
R,S. Given the conditions for semantics-preservation as stated by
Lemma 3. Their schedule dimensions are permutable up to dimen-
sion k if in addition:

∀DR,S, ∀p ∈ {1, . . . ,k}, ∀〈!xR,!xS〉 ∈ DR,S,

ΘSp(!xS)−ΘRp(!xR) ≥ δ
D R,S
p

To translate k into actual number of permutable loops, the k
associated schedule dimensions must express non-constant sched-
ules.

Rectangular tiling Selecting schedules such that each dimension
is independent with respect to all others enables a more efficient
tiling. Rectangular or close to rectangular blocks are achieved when
possible, avoiding complex loop bounds which may arise in the
case of arbitrarily shaped tiles. We resort to augmenting the con-
straints, level-by-level, with independence constraints. Hence, to



compute schedule dimension k, we need instantiate first a sched-
ule for all previous dimensions 1 to k−1. This comes from the fact
that orthogonality constraints are not linear or convex and cannot be
modeled as affine constraints directly. In its complete form, adding
orthogonality constraints leads to a non-convex space, and ideally,
all cases have to be tried and the best among those kept. When the
number of statements is large, this leads to a combinatorial explo-
sion. In such cases, we restrict ourselves to the sub-space of the
orthogonal space where all the constraints are non-negative (that is,
we restrict to have θi, j ∈N). By just considering a particular convex
portion of the orthogonal sub-space, we discard solutions that usu-
ally involve loop reversals or combination of reversals with other
transformations; however, we believe this does not make a strong
difference in practice. For the rest of this paper, we now assume
θi, j ∈ N.
Inner permutable loops If it is not possible to express permutable
loops for the first level, Bondhugula proposed to split the state-
ments into distinct blocks to increase the possibility to find outer
permutable loops [8]. Since our technique already supports explic-
itly the selection of any semantics-preserving possibility to split
statements into blocks via the statement interleaving, we propose
instead to enable the construction of inner permutable loops, by
choosing to maximize the number of dependences solved at the first
levels until we (possibly) find permutable dimensions at the current
level. Doing so increases the freedom for the schedule at inner di-
mensions when it is not possible to express permutable loops at the
outer levels. Maximizing the number of dependences solved at a
given level was introduced by Feautrier [18] and we use a similar
form:

Si =max ∑
D R,S

δ
D R,S
k (9)

This cost function replaces the permutability condition, when it
is not possible to find a permutable schedule for a given dimension
k.
Dependence distance minimization There are infinitely many
schedules that may satisfy the permutability criterion from Defi-
nition 6 as well as (9). An approach that has proved to be simple,
practical, and powerful has been to find those schedules that have
the shortest dependence components along them [6]. For polyhe-
dral code, the distance between dependent iterations can always be
bounded by an affine function of the global parameters, represented
as a p-dimensional vector!n.

u.!n+w≥ΘS (!xS)−ΘR (!xR) 〈!xR,!xS〉 ∈ DR,S (10)
u ∈ Np,w ∈ N

In order to maximize data locality, one may include read-after-
read dependences in the set of dependences DR,S considered in the
bounding function (10). We showed in (2) that there always exists
a parametric form −K.!n−K for the lower bound of the schedule
latency. Reciprocally, u and w can always be selected large enough
for u.!n+ w to be an upper-bound on the schedule latency. So
considering read-after-read dependences in the bounding function
does not prevent from finding a legal schedule.
The permutability and bounding function constraints are recast

through the affine form of the Farkas Lemma such that the only
unknowns left are the coefficients of Θ and those of the bounding
function, namely u, w. Coordinates of the bounding function are
then used as the minimization objective to obtain the unknown
coefficients of Θ.

minimize≺
(

u,w, . . . ,θi,1, . . .
)

(11)
The resulting transformation is a complex composition of multi-

dimensional loop fusion, distribution, interchange, skewing, shift-
ing and peeling. Eventually multidimensional tiling is applied on

all permutable bands, and resulting tiles can be executed in paral-
lel or at worse with a pipeline-parallel schedule [8]. Tile sizes are
computed such that data accessed by each tile roughly fits in the L1
cache.

4.2 Fusability check
We presented in Section 2.5 a generalized check for fusibility
which guarantees at least one instance of the iteration domains are
fused. But for fusion to have a stronger performance impact, a bet-
ter criterion is preferred to guarantee that at most x instances are
not finely interleaved. In general, computing the exact set of inter-
leaved instances requires complex techniques. A typical example
is schedules generating a non-unit stride in the supporting lattice
of the transformed iteration domain. For such cases, computing the
exact number of non-fused instances could be achieved using the
Ehrhart quasi-polynomial of the intersection of the image of itera-
tion domains by the schedules [10]. However, this refined precision
is not required to determine if a schedule represents a potentially
interesting fusion. We allow for a lack of precision to present an
easily computable test for fusibility based on an estimate of the
number of instances that are not finely interleaved.
For the sake of simplicity, we assume that loop bounds have

been normalized such that !0 is the first iteration of the domain.
When considering non-negative coefficients, the lowest timestamp
assigned by a schedule ΘRk is simply Θ

R
k (

!0). One can recompute
the corresponding timestamp by looking at the values of the co-
efficients attached to the parameters and the constant. Hence, the
timestamp interval c between the two first scheduled instances by
ΘRk and Θ

S
k is simply the difference of the (parametric) constant

parts of the schedules. In addition, to avoid the case where ΘRk
and/or ΘSk are (parametric) constant schedules, we force the linear
part of the schedule to be non-null. This is formalized in Defini-
tion 7.

DEFINITION 7 (Fusability restricted to non-negative coefficients).
Given two statements R,S such that R is surrounded by dR loops,
and S by dS loops. They are fusable at level p if, ∀k ∈ {1 . . . p},
there exist two semantics-preserving schedules ΘRk and ΘSk such
that:

(i) −c<ΘRk (!0)−ΘSk(!0) < c

(ii)
dR

∑
i=1

θRk,i > 0,
dS

∑
i=1

θSk,i > 0

The constant c is an indicator on the timestamp difference between
the first scheduled instance of R and the first scheduled instance
of S. By tuning the allowed size for this interval, one can range
from full, aligned fusion (c= 0) to full distribution (with c greater
than the schedule latency of R or S). Note that Definition 7 is inde-
pendent from any composition of affine transformations that may
be needed to enable the fusion of the statements. The schedules
that implement the fusion (hence modeling also the fusion-enabling
sequence of transformations) are simply solutions in the space of
semantics-preserving non-negative schedules augmented with the
fusibility constraints.

4.3 Computation of the set of interleavings
We have now restricted θi, j ∈ N. A consequence is the design
of a specialized version of our generic algorithm to compute the
set of semantics-preserving interleavings. This specialized version
leverages new results on the transitivity of fusibility for the case of
non-negative schedule coefficients, as shown below. Furthermore,
it does not require computing with L , which significantly improves
the overall complexity of the procedure.



Fusability is the capability to exhibit a semantics-preserving
schedule such that some of the instances are fused, according to
Definition 7. First let us remark that fusibility is not a transitive
relation. As an illustration, consider the sequence of matrix-by-
vector products x = Ab, y = Bx, z = Cy. While it is possible to
fuse them 2-by-2, it is not possible to fuse them all together. When
considering fusing loops for x = Ab, y = Bx, one has to permute
loops in y= Bx. When considering fusing loops for y= Bx, z=Cy,
one has to keep loops in y = Bx as is. We now present a sufficient
condition to determine the transitivity of fusibility, based on the
existence of compatible pairwise permutations.
First we introduce a decomposition of one-dimensional sched-

ules in two sub-parts, with the objective of isolating loop permuta-
tion from the other transformations embedded in the schedule. One
can decompose a one-dimensional scheduleΘRk with coefficients in
N into two sub-schedules µR and λR such that:

ΘRk = µR+λR, µRi ∈ N, λRi ∈ N

without any loss of expressiveness. Such a decomposition is always
possible because of the distributivity of the matrix multiplication
over the matrix addition. For our purpose, we are interested in mod-
eling one-dimensional schedules which are not constant schedules.
This is relevant as we do not want to consider building a schedule
for fusion that would translate only into statement interleaving. On
the contrary we aim at building a schedule that performs the inter-
leaving of statements instances, hence the linear part of the sched-
ule must be non-null. For R surrounded by d loops, we enforce µ to
be a linear form of the d loop iterators:

µR(!xR) =
(

µR1 . . . µRd !0 0
)

.
(

i1 . . . id !n 1
)t

To model non-constant schedules, we add the additional constraint
∑di=1µ

R
i = 1. Note that by constraining µ to have only one coeffi-

cient set to 1, this does not prevent to model any compositions of
slowing or skewing: these would be embedded in the λ part of the
schedule, as shown in the example below.
The µ part of the schedule models different cases of loop per-

mutations. For instance for statement R surrounded by 3 loops in
the ThreeMatMat example, µR can take only three values:

µR(!xR) =
(

1 0 0 0 0
)

.
(

i j k N 1
)t

= (i)

µR(!xR) =
(

0 1 0 0 0
)

.
(

i j k N 1
)t

= ( j)

µR(!xR) =
(

0 0 1 0 0
)

.
(

i j k N 1
)t

= (k)

while λR can take arbitrary values. For better illustration let us
now build the decomposition of the schedule ΘRk = (2. j+ k+ 2).
ΘRk is the composition of a permutation, a non-unit skewing and a
shifting, and can be decomposed as follows:

µR =
(

0 1 0 0 0
)

λR =
(

0 1 1 0 2
)

ΘRk (!xR) = (µR+λR)(!xR) = (2. j+ k+2)

One may note that another possible decomposition is µR(!xR) = (k),
λR(!xR) = (2 j+2). In general, when the schedule contains skewing
it is possible to embed either of the skewing dimensions in the µ
part of the schedule. For the sake of coherency we add an extra con-
vention for the decomposition: µmatches the first non-null iterator
coefficient of the schedule. Returning to the example, µR(!xR) = ( j),
λR(!xR) = ( j+ k+2) is thus the only valid decomposition of ΘRk .
Note that this decomposition prevents modeling of composi-

tions of loop permutations in the λ part. For λ to represent a loop
permutation, λ must have values in Z, as shown in the following
example:

µR(!xR) =
(

1 0 0 0 0
)

.
(

i j k N 1
)t

=
(

i
)

(µR+λ)(!xR) =
(

j
)

⇒ λ=
(

−1 1 0 0 0
)

which is not possible as we have constrained λi ∈ N. Hence, when
considering arbitrary compositions of permutation, (parametric)
shifting, skewing and peeling, the µ+ λ decomposition separates
permutation (embedded in the µ part of the schedule) from the
other transformations (embedded in the λ part of the schedule).
We now show it is possible to determine if a set of statements are
fusable only by looking at the possible values for the µ part of their
schedules.
Considering three statements R,S,T that are fusable while pre-

serving the semantics at level k. Then there exist ΘRk = µR +
λR, ΘSk = µS + λS, ΘTk = µT + λT leading to fusing those state-
ments. Considering now the sub-problem of fusing only R and S,
we build the setM R,S of all possible values of µR,µS for which there
exist a λR,λS leading to fuse R and S. Obviously, the value of µR,µS
leading to fusing R,S,T are in M R,S, and µS,µT are also in M S,T .
Similarly µR,µT are in M R,T . We derive a sufficient condition for
fusibility based on pairwise loop permutations for fusion.

LEMMA 6 (Pairwise sufficient condition for fusibility). Given three
statements R,S,T such that they can be 2-by-2 fused and dis-
tributed. Given M R,S (resp. M R,T , resp. M S,T ) the set of possible
tuples µR,µS (resp. µR,µT , resp. µS,µT ) leading to fusing R and S
(resp. R and T , resp. S and T) such that the full program semantics
is respected. R,S,T are fusable if there exists µR,µS,µT such that:

µR,µS ∈M R,S

µR,µT ∈M R,T

µS,µT ∈M S,T

Proof. Given the schedule ΘRk = µR+λR,ΘSk = µS +λS leading to
fusing R and S, Θ′R

k = µR +λ
′R,ΘTk = µT +λT leading to fusing R

and T , and Θ′S
k = µS +λ

′S,Θ
′T
k = µT +λ

′T leading to fusing S and
T , such that they all preserve the full program semantics.
The schedule Θ∗R

k = µR +λR +λ
′R,Θ∗S

k = µS +λS +λ
′R is le-

gal, as adding λ′R consists in performing additional compositions
of skewing and shifting, which cannot make the dependence vec-
tors lexicographically negative. It cannot consist in performing a
parametric shift (resulting in a loop distribution), ΘRk is a schedule
fusing R and S and Θ′R

k is a schedule fusing R and T . As Θ∗R
k is

a non-constant schedule, it leads to fusing R and S. Generalizing
this reasoning we can exhibit the following semantics-preserving
schedule leading to the fusion of R,S,T :

Θ∗R
k = µR+λR+λ

′R+λS+λ
′S+λT +λ

′T

Θ∗S
k = µS+λR+λ

′R+λS+λ
′S+λT +λ

′T

Θ∗T
k = µT +λR+λ

′R+λS+λ
′S+λT +λ

′T

As all statements are fused 2-by-2, they are fused all together. As
the three statements can be distributed 2-by-2, there is no depen-
dence cycle.
To stress the importance of Lemma 6, let us return to the Three-

MatMat example. We can compute the pairwise permutations for
fusion sets at the outermost level:
M R,S = {(i, i);(i, j);(i,k);( j, i);( j, j);( j,k);(k, i);(k, j);(k,k)}
M R,T = {(i, i);( j,k)}
M S,T = {(i,k);( j, j)}

These sets are computed by iteratively testing, against the set of
constraints for semantics-preservation augmented with fusion and
orthogonality constraints, for the existence of solutions with a non-
null value for each of the coefficients associated with the statement
iterators for only the two considered statements. This is in contrast



to the general algorithm which requires to consider the whole set
of candidate statements for fusion. Here we can decide that R,S,T
are fusable, as the solution µR = j, µS = i, µT = k respects the
conditions from Lemma 6. This solution is presented in Figure 2(a).
To improve further the tractability, we rely on two more stan-

dard properties on fusion. Given two statements R and S:
1. if R and S are not fusable, then any statement on which R
transitively depends on is not fusable with S and any statement
transitively depending on S;

2. reciprocally, if R and S must be fused, then any statement
depending on R and on which S depends must also be fused
with R and S.

These properties cut the number of tested sequences dramatically,
in particular, in highly constrained programs such as loop-intensive
kernels. They are used at each step of the optimization algorithm.

4.4 Optimization algorithm
We now present our optimization algorithm. The algorithm ex-
plores possible interleavings of dimension maxExploreDepth, and
generates a collection of program schedules, each of them being a
candidate for the optimization. We use iterative compilation to se-
lect the best performing one. For each candidate program schedule
we generate back a syntactic C code, compile it and run it on the
target machine.
The structure and principle of the optimization algorithm,

shown in Figure 4, matches that of the pruning algorithm of Fig-
ure 3, as it also aims at computing a set of feasible interleavings at a
given level. It is in essence a specialization of the pruning algorithm
for our optimization problem instance. To decide the fusibility of
a set of statements, we put the problem in a form matching the
applicability conditions of Lemma 6. We merge nodes that must be
2-by-2 fused to guarantee that we are checking for the strictest set
of program-wise valid µ values when considering fusibility.
Procedure buildLegalOptimizedSchedules computes, for a

given pair of statements R,S, the set TR,S of semantics-preserving
non-negative schedules augmented with permutability and orthog-
onality constraints as defined in the previous Section, given the
previously computed rows of Θ. Procedures mustDistribute,
mustFuse, mergeNodes operate in a similar fashion as in the gen-
eral case. Procedure computeLegalPermutationsAtLevel com-
putesM R,S the set of all valid permutations µR,µS leading to fusion.
To check if a given permutation µR,µS is valid and leading for fu-
sion at level d, the set of constraints is tested for the existence of a
solution where the schedule coefficients of row d corresponding to
µR and µS is not 0. This is sufficient to determine the existence of
the associated λ part. Procedure existCompatiblePermutation
collects the setsM of the pairs of statements connected by the path
p, and tests for the existence of µ values according to Lemma 6.
If there is no compatible permutation, then an additional constraint
is added to F d such that it is not possible to fuse the statements
in p all together. The constraint sets that the ei, j variables, for
all pairs i, j in the path p, cannot be set to 1 all together. Pro-
cedure embedInterleaving instantiate a schedule row Θ2d that
implements the interleaving i, using only the scalar coefficients
of the schedule. Procedure computeOptimizedSchedule instanti-
ates a schedule row Θ2d+1 at the current interleaving dimension
d, for all statements. The interleaving is given by i, and indi-
vidually for each group of statements to be fused under a com-
mon loop, a schedule is computed to maximize fusion and to
enforce permutability if possible. To select the coefficient val-
ues we resort to the objective function (11). Finally, procedure
finalizeOptimizedSchedule computes the possibly remaining
schedule dimensions, when maxEploreDepth is lower than the
maximum program loop depth. Note that in this case, maximal fu-

OptimizeRec: Compute all optimizations
Input:
Θ: partial program optimization
pdg: polyhedral dependence graph
d: current level for the interleaving exploration
n: number of statements
maxExploreDepth: maximum level to explore for interleaving

Output:
Θ: complete program optimization

1 G ← newGraph(n)
2 F d ← O
3 un f usable ← /0
4 forall pairs of dependent statements R,S in pdg do
5 TR,S ← buildLegalOptimizedSchedules({R,S}, Θ, d, pdg)
6 if mustDistribute(TR,S, d) then
7 F d ← F d ∩ {eR,S = 0}
8 else
9 if mustFuse(TR,S, d) then
10 F d ← F d ∩ {eR,S = 1}
11 end if
12 F d ← F d ∩ {sR,S = 0}
13 M R,S ← computeLegalPermutationsAtLevel(TR,S, d)
14 addEdgeWithLabel(G, R, S, M R,S)
15 end if
16 end for
17 forall pairs of statements R,S such that eR,S = 1 do
18 mergeNodes(G, R, S)
19 end for
20 for l ← 2 to n−1 do
21 forall paths p in G of length l such that

there is no prefix of p in un f usable do
22 if ¬ existCompatiblePermutation(nodes(p)) then
23 F d ← F d ∩ {∑p epairs in p < l−1}
24 un f usable ← un f usable ∪ p
25 end if
26 end do
27 end for
28 forall i ∈ F d do
29 Θ2d ← embedInterleaving(Θ, d, i)
30 Θ2d+1 ← computeOptimizedSchedule(Θ, pdg, d, i)
31 if d < maxExploreDepth then
32 OptimizeRec(Θ, pdg, d+1, n, maxExploreDepth)
33 else
34 finalizeOptimizedSchedule(Θ, pdg, p)
35 output Θ
36 end if
37 end for

Figure 4. Optimization Algorithm

sion is used to select the interleaving, hence we do not need to build
a set of interleavings for the remaining depths.
In practice this algorithm proved to be very fast, and for instance

computing the set F 1 of all semantics-preserving interleavings at
the first dimension takes less than 0.5 second for the benchmark
ludcmp, pruning I 1 from about 1012 structures to 8, on an initial
space with 182 binary variables to model all total preorders. Sub-
sequently traversing F 1 and computing a valid transformation for
all interleavings takes an additional 2.1 second.

5. Experimental Results
Studies performed on the performance impact of selecting sched-
ules at various levels highlighted the higher impact of carefully
selecting outer loops [32, 33]. The selection of the statement in-
terleaving at the outermost level captures the most significant dif-
ference in terms of locality and communication. We can limit the
recursive traversal of interleavings to the outer level only, while ob-
taining significant performance improvement and a wide range of
transformed codes. Nevertheless, when the number of candidates in
F 1 is very small, typically because of several loop-dependent de-
pendences at the outer level, it is relevant to build F 2 and further.



O F 1

Benchmark #loops #stmts #refs #dim #cst #points #dim #cst #points Time Pb. Size perf-Intel perf-AMD
advect3d 12 4 32 12 58 75 9 43 26 0.82s 300x300x300 1.47× 5.19×
atax 4 4 10 12 58 75 6 25 16 0.06s 8000x8000 3.66× 1.88×
bicg 3 4 10 12 58 75 10 52 26 0.05s 8000x8000 1.75× 1.40×
gemver 7 4 19 12 58 75 6 28 8 0.06s 8000x8000 1.34× 1.33×
ludcmp 9 14 35 182 3003 ≈ 1012 40 443 8 0.54s 1000x1000 1.98× 1.45×
doitgen 5 3 7 6 22 13 3 10 4 0.08s 50x50x50 15.35× 14.27×
varcovar 7 7 26 42 350 47293 22 193 96 0.09s 1000x1000 7.24× 14.83×
correl 5 6 12 30 215 4683 21 162 176 0.09s 1000x1000 3.00× 3.44×

Table 1. Search space statistics and performance improvement

Note that in the experiments presented in this paper we traverse
exhaustively only F 1.

Search space statistics Several ei, j and pi, j variables are set dur-
ing the pruning of O , so several consistency constraints are made
useless and are not built, significantly helping to reduce the size
of the space to build. Table 1 illustrates this by highlighting, for
our benchmarks considered, the properties of the polytope O in
terms of the number of dimensions (#dim), constraints (#cst) and
points (#points) when compared to F 1, the polytope of possible
interleavings for the first dimension only. For each benchmark, we
list #loops the number of loops, #stmts the number of statements,
#refs the number of array references, as well as the time to build
all candidate interleavings from the input source code (that is, in-
cluding all analysis) on an Intel Xeon 2.4GHz. We also report the
dataset size we used for the benchmarks (Pb. Size).

Performance evaluation The automatic optimization and paral-
lelization approach has been implemented in POCC, the Polyhedral
Compiler Collection, a complete source-to-source polyhedral com-
piler based on available free software for polyhedral compilation.3
The time to compute the space, select a candidate and compute a
full transformation is negligible with respect to the compilation and
execution time of the tested versions. In our experiments, the full
process takes a few seconds for the smaller benchmarks, and up to
about 2 minutes for correl on an Intel Xeon processor.
Extensive performance characterization is beyond the scope of

this paper. The reader is referred to other publications [32, 34] for
a more comprehensive analysis of the performance issues that are
successfully addressed by our iterative framework on various high-
end multi-core architectures. Nevertheless, to illustrate the benefit
of our approach, we report in Table 1 the performance improve-
ment obtained by our iterative process. We used Intel ICC 11.0
with options -fast -parallel -openmp as the baseline on the
original code, and also to compile all our optimized programs.
We report the performance improvement achieved over ICC with
automatic parallelization enabled on the original code, under the
column perf-Intel for a 4-socket Intel hex-core Xeon E7450 (Dun-
nington), running at 2.4GHz with 64GB of memory (24 cores, 24
hardware threads), and perf-AMD for a 4-socket AMD quad-core
Opteron 8380 (Shanghai) running at 2.50GHz (16 cores, 16 hard-
ware threads) with 64GB of memory.
Beyond absolute performance improvement, another motivat-

ing factor for iterative selection of fusion structures is performance
portability. Because of significant differences in design, in particu-
lar in SIMD units’ performance and cache behavior, a transforma-
tion has to be tuned for a specific machine. This leads to a signif-
icant variation in performance across tested frameworks. To illus-
trate this, we show in Figure 5 the relative performance normalized
with respect to icc-par for gemver, for the Xeon and Opteron. The
version index is plotted on the x axis; 1 represents maximal fusion

3 PoCC is available at http://pocc.sourceforge.net

while 8 corresponds to maximal distribution. For the Xeon, the best
found version performs 10% better than the best fusion configura-
tion for the Opteron. Optimizing for the Opteron, the best version
performs 20% better than the best fusion structure for the Xeon.

Figure 5. Performance variability for gemver

Tuning the trade-off between fusion and distribution is a rele-
vant approach to drive a complete high-level optimization frame-
work. The main motivation is the difficulty to design a portable
heuristic to select the best interleaving, as the best fusion struc-
ture is machine-dependent and even depends on the back-end com-
piler used. Also, as shown in Figure 2, the interleaving selection
can dramatically impact the transformations required to implement
the interleaving (e.g., loop interchange) and subsequently drives the
optimization process.
Our technique is able to automatically adapt to the target frame-

work, and thanks to empirical search successfully discovers the best
fusion structure, whatever the specifics of the program, compiler
and architecture.

6. Related Work
Traditional approaches to loop fusion [25, 29, 40] are limited in
their ability to handle compositions of loop transformations. This is
mainly due to the lack of a powerful representation for dependences
and transformations. Hence, non-polyhedral approaches typically
study fusion in isolation from other transformations. Megiddo and
Sarkar [30] presented a solution to the problem of loop fusion in
parallel programs that performs fusion while preserving the par-
allelism in the input program. We believe that several interesting
solutions are not obtained when fusion is decoupled from paral-
lelization in those frameworks where legal fusion choices are left
out of the framework. Darte et al. [13, 14] studied the combination
of loop shifting and fusion for parallelization. In contrast to all of
these works, the search space explored in this paper includes fusion
in the presence of all polyhedral transformations.
Heuristics for loop fusion and tiling have been proposed in loop-

nest optimizers [26, 35, 45, 48]. Those heuristics have also been re-
visited in the context of new architectures with non-uniform mem-



ory hierarchies and heterogeneous computing resources [37]. The
polyhedral model is complementary to these efforts, opening many
more opportunities for optimization in loop nest optimizers and
parallelizing compilers. Note that the polyhedral model is currently
being integrated into production compilers, including GCC4, IBM
XL and LLVM/Polly.
A heuristic that integrates loop fusion and tiling in the poly-

hedral model that subsumes a number of transformations such as
interchange, skewing and loop shifting was presented in Bond-
hugula et al. [6, 8]. Their work builds complex sequences of
transformations that enable communication-minimal tiling of im-
perfectly nested loops that generalizes the prior work on tiling
perfectly-nested loops [21, 23, 36, 49] and is helpful in identifying
parallelism-locality trade-offs. Bondhugula et al. [7] refined their
static cost model for fusion by incorporating utilization of hard-
ware prefetch stream buffers, loss of parallelism, and constraints
imposed by privatization and code expansion. However, these tech-
niques do not model a closed space of all and only distinct fusion
structures, instead they operate on the entire space of valid fusion
structures and select a specific one that minimizes a static cost
function.
Across a broad range of machine architectures and compiler

transformations, iterative compilation has proven to be effective
in deriving significant performance benefits [1, 5, 19, 31, 33, 35,
37, 42, 46]. Nevertheless, none of iterative compilation approaches
achieved the expressiveness and the ability to apply complex se-
quences of transformations presented in this paper, while focusing
the search only on semantics-preserving transformation candidates.
Several powerful semi-automatic frameworks based on the

polyhedral model [9, 11, 20, 24, 43] have been proposed; these
frameworks are able to capture fusion structures, but do not con-
struct profitable parallelization and tiling strategies using a model-
based heuristic.
R-Stream is a source-to-source, auto-parallelizing compiler de-

veloped by Reservoir Labs, Inc. R-Stream is based on the poly-
hedral model and targets modern heterogeneous multi-core archi-
tectures, including multiprocessors with caches, systems with ac-
celerators, and distributed memory architectures that require ex-
plicit memory management and data movement [28]. The affine
scheduler in R-Stream builds on contributions from Feautrier [18],
Megiddo and Sarkar [30] and Bondhugula et al. [8]. It introduced
the concept of affine fusion to enable a single formulation for the
joint optimization of cost functions representing tradeoffs between
amount of parallelism and amount of locality at various depths in
the loop nest hierarchy. Scheduling algorithms in R-Stream search
an optimization space that is either constructed on a depth-by-
depth basis as solutions are found or based on the convex space
of all legal multi-dimensional schedules as had been illustrated by
Vasilache [44]. R-Stream allows direct optimization of the tradeoff
function using Integer Linear Programming (ILP) solvers as well
as iterative exploration of the search space. Redundant solutions in
the search space are implicitly pruned out by the combined tradeoff
function as they exhibit the same overall cost. In practice, a solution
to the optimization problem represents a whole class of equivalent
scheduling functions with the same cost.

7. Conclusions
The selection of a profitable composition of loop transformations
is a hard combinatorial problem. We proposed a complete, non-
redundant characterization of multidimensional affine transforma-
tions as a convex space. We then pruned this polyhedron, focus-
ing on multidimensional statement interleavings corresponding to
a generalized combination of loop fusion, loop distribution and

4 Graphite framework: http://gcc.gnu.org/wiki/Graphite.

code motion. We proposed a practical optimization algorithm to
explore the pruned polyhedron, while heuristically building a prof-
itable, semantics-preserving, affine enabling transformation. This
algorithm was applied to relevant benchmarks, demonstrating good
scalability and strong performance improvements over state-of-the-
art multi-core architectures and parallelizing compilers.
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