
The Platform-Aware Compilation Environment 1

Preliminary Design Document

September 15, 2010

1The Platform-Aware Compilation Environment project (PACE) is funded by the Defense Advanced Projects
Research Agency (DARPA) through Air Force Research Laboratory (AFRL) Contract FA8650-09-C-7915 with
Rice University. PACE is part of the Architecture-Aware Compilation Environment program (AACE).

The opinions and findings in this document do not necessarily reflect the views of either the United States
Government or Rice University.

ii

Credits

The Platform-Aware Compiler Environment (PACE) project is an inter-institutional collaboration.

Organization Location Principal Contacts

Rice University (lead) Houston, TX, USA Keith D. Cooper, PI
John Mellor-Crummey
Erzsébet Merényi
Krishna Palem
Vivek Sarkar
Linda Torczon

ET International Newark, DE, USA Rishi Khan

Ohio State University Columbus, OH, USA P. Sadayappan

Stanford University Palo Alto, CA, USA Sanjiva Lele

Texas Instruments, Inc. Dallas, TX, USA Reid Tatge

The PACE team includes a large number of additional colleagues and collaborators:

Rajkishore Barik,1 Heba Bevan,1 Jean-Christophe Beyler,2 Zoran Budimlić,1 Michael
Burke,1 Vincent Cave,1 Lakshmi Chakrapani,1 Phillipe Charles,1 Jack Dennis,2

Sebastien Donadio,2 Guohua Jin,1 Timothy Harvey,1 Thomas Henretty,3 Justin
Hoelwinski,3, Zhao Jishen,1 Sam Kaplan,2 Kirk Kelsey,2 Rene Pec̆nik,4 Louis-Noël
Pouchet,3 Atanas Rountev,3 Jeffrey Sandoval,1 Arnold Schwaighofer,1 Jun Shirako,1

Ray Simar,1 Brian West,1 Yonghong Yan,1 Anna Youseffi,1 Jisheng Zhao1

1 Rice University
2 ET International
3 Ohio State University
4 Stanford University
5 Texas Instruments, Incorporated

Technical Contacts: Keith D. Cooper 713-348-6013 keith@rice.edu

Linda Torczon 713-348-5177 linda@rice.edu

Vivek Sarkar 713-348-5304 vsarkar@rice.edu

Design DocumentMaster: Michael Burke 713-348-4476 mgb2@rice.edu

Administrative Contacts: Penny Anderson 713-348-5186 anderson@rice.edu

Lena Sifuentes 713-348-6325 lenas@rice.edu

Darnell Price 713-348-5200 darnell@rice.edu

Web Site: http://pace.rice.edu

Contents

1 Overview of the PACE System 1

1.1 Introduction . 1

1.1.1 Motivation . 1

1.1.2 Roadmap for the Design Document . 2

1.2 Structure of the PACE System . 2

1.2.1 Information Flow in the PACE System . 4

1.2.2 Storing Knowledge in a Distributed Fashion 7

1.3 Adaptation in the PACE Compiler . 8

1.3.1 Characterization-Driven Optimization . 8

1.3.2 Offline Feedback-Driven Optimization . 9

1.3.3 Online Feedback-Driven Optimization . 10

1.3.4 Machine Learning . 10

2 Resource Characterization in the PACE Project 13

2.1 Introduction . 13

2.1.1 Motivation . 13

2.1.2 Approach . 14

2.2 Functionality . 15

2.2.1 Interfaces . 15

2.2.2 Inputs . 15

2.2.3 Output . 16

2.3 Method . 17

2.3.1 Producing Characteristic Values . 18

2.3.2 Reporting Characteristic Values . 21

3 An Overview of the PACE Compiler 25

3.1 Introduction . 25

3.2 Functionality . 25

3.2.1 Input and Output . 25

3.2.2 Interfaces . 26

3.2.3 The Optimization Plan . 27

3.3 Components of the PACE Compiler . 28

3.4 Paths Through the PACE Compiler . 30

3.5 Optimization in the PACE Compiler . 32

3.6 Software Base for the PACE Compiler . 33

iii

iv CONTENTS

4 PACE Application-Aware Partitioner 35

4.1 Introduction and Motivation . 35
4.2 Functionality . 35

4.2.1 Input . 36
4.2.2 Output . 36
4.2.3 Out of Scope . 36

4.3 Method . 36
4.3.1 Call Tree Processing: Stage 1 . 37
4.3.2 Partitioning: Stage 2 . 37
4.3.3 Source Reorganization: Stage 3 . 38

4.4 Results . 39
4.4.1 SPEC Benchmarks . 39

4.5 Summary . 39
4.6 Command Line Options . 39

4.6.1 Build Options File . 39
4.6.2 Pruning . 40
4.6.3 Function Limit . 40
4.6.4 Graphs . 41
4.6.5 Line Limit . 41
4.6.6 Program Name . 41
4.6.7 Output Directory . 41
4.6.8 Partitioner Type . 41
4.6.9 Array Padding . 41
4.6.10 RPU Graph . 42
4.6.11 Verbose . 42
4.6.12 Profile . 42

4.7 Build Options File Format . 42
4.8 Array Padding . 42

5 PACE Platform-Aware Optimizer Overview 45

5.1 Introduction . 45
5.2 Functionality . 45

5.2.1 Input . 45
5.2.2 Output . 45

5.3 Method . 47
5.3.1 Front end . 48
5.3.2 Program Analyses . 48
5.3.3 Legality Analysis . 48
5.3.4 Cost Analysis: Memory Hierarchy . 49
5.3.5 Cost Analysis: PAO-TAO Query Interface . 50
5.3.6 Transcription . 51
5.3.7 The Optimization Plan . 51
5.3.8 PAO Parameters for Runtime System . 51
5.3.9 Guidance from Runtime System . 52

6 The Polyhedral Framework 53

6.1 Introduction . 53
6.1.1 Motivation . 53
6.1.2 Background . 54

6.2 Functionality . 54

CONTENTS v

6.2.1 Static Control Part (SCoP) Code Fragments 54
6.2.2 SCoP Detection and Extraction of Polyhedra 55
6.2.3 Polyhedral Dependence Analysis with Candl 56
6.2.4 Pluto Transformation Generator . 56
6.2.5 Polyhedral Code Generation with CLooG . 57
6.2.6 Parametric Tiling . 57
6.2.7 Translation to Sage ASTs . 57

6.3 Method . 57
6.3.1 SCoP Detection and Extraction of Polyhedra 57
6.3.2 Polyhedral Dependence Analysis with Candl 58
6.3.3 Pluto Transformation Generator . 59
6.3.4 Polyhedral Code Generation with CLooG . 60
6.3.5 Translation to Sage ASTs . 61
6.3.6 Parametric Tiling . 61

6.4 Results . 65

7 AST-based Transformations in the Platform-Aware Optimizer 67

7.1 Introduction and Motivation . 67
7.2 Functionality . 68

7.2.1 Input . 68
7.2.2 Output . 68

7.3 Method . 68
7.3.1 Pattern-driven Idiom Recognition . 69
7.3.2 Loop Tiling . 70
7.3.3 Loop Interchange . 71
7.3.4 Unrolling of Nested Loops . 71
7.3.5 Scalar Replacement . 71
7.3.6 Incremental Reanalysis . 72

8 The Rose to LLVM Translator 79

8.1 Introduction . 79
8.1.1 Motivation . 79

8.2 Functionality . 79
8.2.1 Input . 79
8.2.2 Output . 80

8.3 Method . 80
8.4 Example . 81

9 The PACE Target-Aware Optimizer 83

9.1 Introduction . 83
9.1.1 Motivation . 83

9.2 Functionality . 84
9.2.1 Interfaces . 85

9.3 Method . 85
9.3.1 Optimization in LLVM . 85
9.3.2 Vectorization . 88
9.3.3 Selecting Optimization Sequences . 88
9.3.4 Producing Answers to PAO Queries . 89

vi CONTENTS

10 The PACE Runtime System 93

10.1 Introduction . 93
10.1.1 Motivation . 93

10.2 Functionality . 94
10.2.1 Interfaces . 95
10.2.2 Input . 95
10.2.3 Output . 95

10.3 Methods . 96
10.3.1 Measurement . 96
10.3.2 Profile Analysis . 98
10.3.3 Analyzing Measurements to Guide Feedback-directed Optimization 99
10.3.4 Online Feedback-directed Parameter Selection 99

10.4 Results . 100

11 Machine Learning in PACE 101

11.1 Introduction - Machine Learning for Compiler Optimization 101
11.1.1 Motivation . 101
11.1.2 Prior Work . 102

11.2 Functionality . 103
11.2.1 What Machine Learning Will Accomplish . 103
11.2.2 Optimization Tasks Identified for Machine Learning 104

11.3 Methodology . 110
11.3.1 Abstraction of PACE Problems For Machine Learning 110
11.3.2 Challenges From a Machine Learning Point Of View 112
11.3.3 Candidate Machine Learning Approaches 114
11.3.4 Productivity metric for Machine Learning . 116
11.3.5 Infrastructure . 117

11.4 Conclusions . 118

A Automatic Vectorization in the PACE Compiler 119

A.1 Overview . 119
A.2 Functionality . 120

A.2.1 Input . 121
A.2.2 Output . 123

A.3 Method . 124
A.3.1 Dynamic Programming . 124

CONTENTS vii

Acronyms Used in This Document

AACE The DARPA Architecture-Aware Compilation Environment Program, which funds the PACE

Project

PACE The Platform-Aware Compilation Environment Project, one of four efforts that form AACE;
this document describes the design of the PACE environment.

AAP The Application-Aware Partitioner, a component of the PACE compiler

API Application Programming Interface

AST Abstract Syntax Tree

CFG Control-Flow Graph

DARPA Defense Advanced Research Projects Agency

gcc Gnu Compiler Collection, a widely-used open-source compiler infrastructure

HIR High-Level Intermediate Representation

ILP Instruction-Level Parallelism

IR Intermediate Representation

ISA Instruction-Set Architecture

LLVM An open-source compiler that is used as the code base for the PACE TAO

LLVM IR The low-level, SSA-based IR used in LLVM and the TAO

ML The PACE Machine Learning subproject and tools

MPI A standard API for programming distributed-memory parallel machines

OPENMP A standard API for programming shared-memory parallel computers

PAO The Platform-Aware Optimizer, a component of the PACE compiler

PAO→TAO The translator from the SAGE III IR to the LLVM IR, a component of the PACE compiler; also
called the Rose-to-LLVM translator

POSIX An international standard API for operating system functionality

RC The PACE Resource Characterization subproject and tools

RCFG Region Control-Flow Graph

RISC Reduced Instruction-Set Computer

RST Region Structure Tree

RTS The PACE Runtime System subproject and tools

RPU Refactored Program Unit, produced by the PACE AAP

SAGE III IR The IR used in Rose, an open source compiler that is the code base for the PACE PAO

SCoP Static Control Part, a single loop nest that is amenable to polyhedral transformations

SSA Static Single-Assignment form

TAO The PACE Target-Aware Optimizer, a component of the PACE compiler

TLB Translation Lookaside Buffer, a structure in the memory hierarchy that caches information
on virtual to physical page mapping

viii CONTENTS

Chapter 1

Overview of the PACE System

The Platform-Aware Compilation Environment (PACE) is an ambitious attempt to con-
struct a portable compiler that produces code capable of achieving high levels of per-
formance on new architectures. The key strategies in PACE are the design and devel-
opment of an optimizer and runtime system that are parameterized by system char-
acteristics, the automatic measurement of those characteristics, the extensive use of
measured performance data to help drive optimization, and the use of machine learn-
ing to improve the long-term effectiveness of the compiler and runtime system.

1.1 Introduction

The Platform-Aware Compilation Environment (PACE) Project is developing tools and techniques
to automate the process of retargeting an optimizing compiler to a new system. The basic approach
is to recast code optimization so that both the individual optimizations and the overall optimiza-
tion strategy are parameterized by target system characteristics, to automate the measurement of
those characteristics, and to provide both immediate runtime support and longer term intelligent
support (through machine learning) for the parameter-driven optimization. PACE is part of a larger
effort, the DARPA-sponsored Architecture-Aware Compiler Environment (AACE) program.1

The PACE environment approaches performance portability in a new way. Rather than focusing
on the details of generating machine code for a new system, PACE relies on a pre-existing native C

compiler for the target system and focuses on generating customized C source code for that com-
piler. In essence, PACE uses the native compiler as its code generator. As with all good compilers,
PACE tries to transform the code that it feeds the code generator into a shape from which the code
generator can produce efficient code.

1.1.1 Motivation

Over the last twenty years, the average time to develop a high-quality compiler for a new system
has ranged between three and five years. Given the rapid evolution of modern computer systems,
and the correspondingly short lifetimes of those systems, the result is that quality compilers appear
for a new system only at the end of its useful lifetime, or later.

Several factors contribute to the lag time between appearance of a new computer system and
the availability of high-quality compilation support for it. The compiler may need to deal with
new features in the target system’s instruction set architecture (ISA). Existing optimizations must

Principal Contacts For This Chapter: Keith Cooper, keith@rice.edu
1The PACE project is funded by the Defense Advanced Projects Research Agency (DARPA) through Air Force Research Lab-
oratory (AFRL) Contract FA8650-09-C-7915 with Rice University. The opinions and findings in this document do not neces-
sarily reflect the views of either the United States Government or Rice University.

1

2 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

be retargeted to the new system;2 those optimizations may not expose the right set of parameters
to simplify retargeting. Finally, the new system may present system-level features that are not well
addressed by existing optimizations, such as the DMA interfaces on the IBM CELL processor. In such
cases, the retargeting effort may require invention and implementation of new transformations to
address system-specific innovations.

The PACE system attacks the first two problems.

• PACE will rely on a native C compiler for code generation–that is, to emit the appropriate
assembly language code. Native compilers will vary in the quality of the code that they pro-
duce. For a native compiler that optimizes code well, PACE will leverage that investment and
rely on the native compiler for the transformations that it does well. For a less capable native
compiler, PACE will include a suite of optimizations that can produce low-level C code that
compiles directly into reasonably efficient assembly code.

• PACE will include a suite of transformations that are parameterized by target-system char-
acteristics, both hardware and software. These transformations will use specific, measured
characteristics to model the target system and will reshape the code accordingly. These
transformations will be retargeted by changing the values of the system characteristics that
they use as parameters. The behavior of the compiler will change with the values of the sys-
tem characteristics.

PACE does not address the final problem, inventing new optimizations for radical new features. It
will, however, free the compiler writer to focus on new transformations to address new architec-
tural features.

Thus, PACE transforms the problem of tuning the optimizer for a new system into the problem
of deriving values for key system characteristics. PACE includes a set of portable tools that measure
those characteristics. Thus to retarget the optimizer, an installer runs the characterization tools
and installs the compiler.

Finally, because the values of some important characteristics cannot be determined accurately
until runtime, PACE includes a runtime system that can adjust optimization parameters in compiler-
generated code. The runtime system makes specific and precise measurements of runtime perfor-
mance. It is capable of identifying rate-limiting resources by code region. It can report the results
of these analyses to either the end user or to the other components in the PACE system.

1.1.2 Roadmap for the Design Document

This chapter provides a survey of the structure and functionality of the PACE system, along with dis-
cussion of system-wide design decisions. § 1.2 provides a description of the major software com-
ponents components of the PACE system, shown in Figure 1.1. The later chapters of this document
describe those components in more detail. Table 1.1 shows how the remaining chapters of this
design document map into the software components of the PACE system.

1.2 Structure of the PACE System

The PACE project has four major components: the PACE Compiler, the PACE Runtime System, the
PACE Resource Characterization tools, and the PACE Machine Learning tools. Figure 1.1 shows the
major components of the PACE system.

• The PACE Compiler is a source-to-source optimizing compiler that tailors application code
for efficient execution on the target system. It accepts as input parallel programs written in C

2Datta et al. showed that variations in target machine architecture necessitate different optimization strategies for stencil
computations [31]. Equally important, follow-on analysis showed that code tailored for any machine in their study per-
formed poorly on any other machine [54].

1.2. STRUCTURE OF THE PACE SYSTEM 3

�
�

�
�

PACE
Characterization

Tools

-

6

-

�
�

�

PACE

Compiler

?�
�

�

PACE Runtime

System

�

6

�
�

�

PACE Machine

Learning Tools

-

-
�

C Code with
OPENMP or MPI

?
Config

File
-

?

Figure 1.1: Major Components of the PACE Systems

Component Chapter

PACE Resource Characterization Tools
Microbenchmarks 2
Interface to other tools 2

PACE Compiler
Compiler Overview 3
Application-Aware Partitioner (AAP) 4
Platform-Aware Optimizer (PAO) 5

Polyhedral Framework 6
AST-based Transformations in the PAO 7

Rose-to-LLVM Translator 8
Target-Aware Optimizer (TAO) 9

PACE Runtime System 10

PACE Machine Learning Tools 11

Table 1.1: Organization of This Design Document

with either MPI or OPENMP calls. It produces, as output, a C program that has been tailored
to the system’s measured characteristics.

• The PACE Runtime System provides support for program execution. It measures application
performance and reports those results to both the user and other PACE tools. It works in con-
cert with the PACE Compiler to provide runtime tuning of specific optimization parameters,
such as tile sizes for blocking.

• The PACE Resource Characterization Tools measure the performance-sensitive character-
istics of the target system that are of interest to the PACE Compiler and the PACE Runtime
System. The tools measure the resources available to a C program, which may differ from the
documented limits of the underlying hardware.

• The PACEMachine Learning Tools perform offline analysis of application performance, us-
ing data from the runtime system, and of compiler behavior. The tools develop recommen-
dations for the compiler and the runtime system. The tools may also play a role in analyzing
the impact of sharing on available resources.

4 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

�

�
	Application-Aware

Partitioner (AAP)

?�

�
	Platform-Aware

Optimizer (PAO)

?

PAO→TAO
Query Interface?

6

?

�

�
	PAO→TAO IR

Translator

?�

�
	Target-Aware

Optimizer (TAO)

@
@
@R?

Optimized
IR

Optimized
C Code

�

�
	PACE Runtime System

�
�

�
�Runtime

parameter
selection

�

�
	Native

Compiler

�

�
	Native

Compiler

�

�
	LLVM

Backend

? ? ?

�

�
	Application

Characterization

6

�

�

�

�
	Performance

Tools
-

6

C Code with
OPENMP or MPI

?

�

�

�
	Machine

Learning

N

?

-

6

-

Config
File

6

?

��

�
	Resource

Characterization

N

q

-

-

�

�
	Compiler

Characterization

-

-

�

�
	Compiler

Driver
-

?

q

q

�

Legend:

Code -
Information -

Color indicates source

Figure 1.2: The PACE System

To configure an installation of the PACE system on a new computer, the system manager installs
the software, produces a configuration file, and invokes the characterization tools. The character-
ization tools produce the data used by the other components in PACE to tailor the system and its
behavior to the target system.

The configuration file contains base information about the target system and its software. The
content of the configuration file is the subject of ongoing negotiations between the AACE Task 1
and Task 2 teams. The format of the configuration file is specified by the Task 2 teams. All AACE

teams will use the same configuration file format.

1.2.1 Information Flow in the PACE System

Figure 1.2 expands on Figure 1.1 to show the tools that make up the major PACE components and
to show the interfaces between the various tools. Thick black lines represent the flow of code. Thin
lines represent the flow of information other than code; they are colored to match the tool that
generates the information. (Double-ended lines are colored to match one of the two tools they
join.) The chapters that describe the individual components (see Table 1.1) provide detail on how
each of these interfaces work.

The Compiler

To compile an application using the PACE tools, the programmer must create a directory that con-
tains the source code for the application and any libraries that are to be optimized with it. PACE will
create, within the application directory, a working directory to hold its work products (e.g., refac-
tored versions of the source code, annotations, performance results, and records of prior com-

1.2. STRUCTURE OF THE PACE SYSTEM 5

pilations). This working directory becomes part of the PACE system’s distributed repository. To
produce executable code, the programmer invokes the compiler driver.

To compile code, the programmer invokes the compiler driver in the application directory. The
compiler driver then sequences the individual components of the PACE Compiler to optimize the
application and to produce executable code for it (see § 3.3). Depending on the application and
its optimization plan (see § 1.2.2), the compiler driver may use the Application-Aware Partitioner
(AAP), the Platform-Aware Optimizer (PAO), the PAO→TAO IR Translator, the Target-Aware Opti-
mizer (TAO), and the native compiler to create one of three distinct compilation paths.

• The compiler driver may follow the full compilation path, using all of the PACE tools to opti-
mize the application and generate transformed C source code, which it then compiles with
the native C compiler.

• If the native compiler has strong optimization capabilities, the compiler driver may follow
a short compilation path, in which it relies on the native compiler to perform some of the
optimization. This path uses a subset of the PACE Compiler components.

• If target system is one for which the PACE Compiler provides backend support,3, the compiler
driver may use PACE Compiler components to optimize the code and to generate native code
for the application.

In each of these scenarios, the compiler driver also invokes the linker to create the actual exe-
cutable code. During compilation, the PAO may invoke the TAO to obtain low-level, detailed infor-
mation about the expected performance of alternate code sequences (see § 9.3.4).

The Runtime System

The Runtime System (RTS) provides performance monitoring and runtime parameter tuning. The
PACE Compiler prepares an executable for the RTS by including the runtime hooks necessary to
initialize the RTS, and by constructing a measurement script that sets environment variables and
flags that control and direct the measurement system. The user invokes the executable through a
measurement script.4

When invoked, the RTS will interpose itself between the application and the operating system to
intercept events such as program launch and termination, thread creation and destruction, signal
handler setup, signal delivery, loading and unloading of dynamic libraries, and MPI initialization
and finalization. It then launches the application, monitors its behavior using a variety of mecha-
nisms (see § 10.3.1), and records the results.

The runtime system also provides an interface for runtime selection of optimization param-
eters. The compiler rewrites the code region into an optimized, parameterized form and builds
the various data structures and support routines needed by the RTS harness for online feedback-
directed optimization (see § 10.3.4).

Managing Annotations One of the system-wide challenges in PACE is providing coordination
and communication among the distinct PACE tools. The RTS measures performance information.
For that information to be of use to the rest of PACE, it must relate to a specific compiled executable
and a specific run of that executable. Rather than build and maintain a central repository, PACE

3Since the PACE Target-Aware Optimizer is built on top of the open-source LLVM system, this option exists on systems
that have a native LLVM backend. LLVM already supports several backends. Expanding that set is not in the scope of the
PACE project. We will explore the tradeoff between direct generation of native code and using the LLVM bytecode to JIT

compilation path.
4It is possible to invoke a PACE-compiled executable without invoking the RTS. The preferred mechanism to achieve that
goal is to invoke it through the measurement script, with the appropriate parameter settings to disable runtime performance
monitoring.

6 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

uses a distributed repository that stores such information with the application’s source code. To
avoid the need for large, complex maps that relate annotations to specific compilations and ex-
ecutions, PACE embeds duplicate copies of needed information directly into the executable code
as static data. For example, the compiler injects into each object file a concise representation of
the optimization plan that produced it. The RTS, in turn, collects those records, adds them to the
performance results, annotates the package with information about the target machine on which
the run occurred, and writes this information into the annotations subdirectory of the application’s
working directory.

To ensure that the other PACE tools find all the relevant performance history records, the RTS

must register the fact that it has run an application with both the PACE Compiler and the PACE

Machine Learning tools. Each of those systems provides a callback to the RTS that records the name
of the executable, the time of the run, and the location of the performance history information.

The Characterization Tools

The PACE resource characterization (RC) tools are a standalone package designed to measure the
performance characteristics of a new system that are important to the rest of the PACE system, and
to provide a simple consistent interface to that information for the other PACE tools. The RC tools
are written in a portable style in the C programming language; they rely on entry points from the
standard C libraries and the POSIX operating system interface. The specific characteristics that
PACE will measure in Phase 1 of the AACE program are described in § 2.2.3.

Measured versus Absolute Numbers In many cases, the RC tools capture an effective number for
the parameter, rather than the actual number provided by the underlying hardware. The effective
quantity is, in general, defined as the amount of that resource available to a C program. For ex-
ample, the effective number of floating-point registers available to a C program depends, in part,
on the number of such registers provided by the underlying hardware. However, the compiler is
almost always the limiting factor in this case. If the hardware provides 16 floating-point registers,
but the compiler cannot allocate more than 14 of them to variables in the application code, then
the effective number should be 14 registers.5

In some cases, a hardware characteristic may not be discernible from a C program. In those
cases, the PACE Compiler cannot rely upon that characteristic in optimization, since the C code
cannot control the behavior. Associativity in the memory hierarchy is a good example of this prob-
lem. If the L2 cache on a processor is physically mapped, the mapping between a source-level data
structure, such as a large array, and its cache locations depends on the mapping of virtual mem-
ory pages to physical page frames, and the tools cannot measure the cache associativity with any
certainty.

Methodology In general, the PACE RC tools provide one or more microbenchmarks to measure
a given characteristic. A microbenchmark is a small code kernel designed to provoke a specific
response, coupled with code to analyze the kernel’s behavior. Typically, that response is a change
in the time that the kernel requires to perform a fixed number of operations. Automatic analysis
of the kernel’s behavior can be complex; effects that a human can read easily from a graph can be
difficult to isolate numerically.

The RC tools produce information that can be accessed through two distinct interfaces: one
designed for the grading tools built by the AACE Task 2 teams and the other designed for internal

5For example, some register allocators will reserve a small number of registers to use for values that are used too infre-
quently to merit their own register. If the compiler reserves two registers for that purpose, it reduces the effective number
available to the application. The PACE Compiler, which will control the number of simultaneously live floating-point values,
should not plan on using those last two registers. Similarly, sharing in the cache hierarchy (between instructions and data
or between cores) can lead to effective cache sizes that are significantly smaller than the hardware cache size.

1.2. STRUCTURE OF THE PACE SYSTEM 7

use in the PACE system. The grading interface is a flat ASCII file in an XML schema designed by
the Task 2 teams. The internal interface is a procedural interface that PACE tools can call to obtain
individual values.

TheMachine Learning Tools

The PACE Machine Learning (ML) tools will augment specific decision making processes within
the PACE system, through analysis of past experience and behavior. Over time, the ML tools will
improve the behavior of the other PACE tools. A modern compilation environment, such as PACE,
can produce reams of data about the application itself, the process used to compile it, and its be-
havior at runtime. Unfortunately, the application’s runtime performance can depend in subtle
ways on an unknown subset of that information, and neither humans nor algorithmic programs
are particularly good at discerning those relationships.

The ML tools are tied closely to specific components in the PACE system, where they provide
additional input, in the form of directives, refined input parameters, or changes to optimization
plans (see Figure 11.1 on page 103). The ML tools draw their inputs from the other PACE tools, as
shown in Figure 1.2. The tools query the resource-characterization interface directly; they find the
input data from the compiler and the runtime system where it is stored with the application.6 The
ML tools will have their own private repository where they can store their context, data, and results.

To facilitate offline learning, the PACE system needs a mechanism that invokes the offline por-
tions of the ML tools on a regular basis. PACE will use the POSIX crontab facility to schedule regular
invocations of the offline PACE ML tools. Problems that are solved online will invoke the appropri-
ate ML tools directly.

1.2.2 Storing Knowledge in a Distributed Fashion

Early diagrams of the PACE system included a centralized knowledge base. While those diagrams
are sound in concept, many minor problems arise in the implementation and use of the tools if the
knowledge base is a central, shared structure. Thus, the implementation of the PACE system will
store its knowledge about an application with the application’s source code. As a result, informa-
tion and annotations generated by the PACE tools are stored in multiple locations. These locations
form a distributed repository, rather than a centralized repository.

Consider, for example, the collection of information that governs how the PACE Compiler opti-
mizes and translates an application. In a traditional compiler, that control information is encoded
in a series of command-line flags to the compiler. While such flags are useful, their very form lim-
its their ability to express complex control information. In the PACE system, each application has
an associated optimization plan that specifies how the compiler should optimize the code. The
optimization plan is a persistent document that specifies both the compilation path and the op-
timizations that the compiler should use. It may also include parameters to individual optimiza-
tions, suggested application orders for those optimizations, or commands to control the individual
components.

Since each of the compiler components consults the optimization plan, the various compo-
nents can modify each other’s behavior by making changes to the optimization plan. This simple
mechanism facilitates feedback-driven adaptive compilation, by allowing an adaptive controller to
explore and evaluate the space of possible optimization strategies over multiple compile-execute
cycles. It also allows one phase of compilation to change the behavior of another; for example,
if the TAO discovers (late in translation) that some inline substitution in the AAP has made some
procedure too long for the native compiler to handle, it can modify the parameters that govern the

6Each execution of a PACE-compiled executable will use a call-back mechanism to register the location of its compilation
and performance data. The call-back mechanism will record that information in the ML tools’ repository.

8 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

Characteristic Offline Online Machine

Driven Feedback-Driven Feedback-Driven Learning

Kind of Long-term
learning

Short-term
adapation

Short-term
adapation

Long-term
learningAdaptation

Time
Frame

Install time Across compiles Runtime Across compiles

Affects All applications One application One application All applications

Adapts to System
System
Application

System System
Application Application
Data PACE

Initiated by RC tools various PAO ML tools
Changes
Behavior of

AAP, PAO, TAO AAP, PAO, TAO RTS AAP, PAO, TAO

Persistence Until next run of
RC tools

Short-term Records results
for ML and PAO

Long-term

Table 1.2: Kinds of Adaptation in the PACE Compiler

decision algorithm for inlining or, perhaps, specify that the AAP should not inline that procedure.
The next section describes the design for adaptation. § 3.2.3 discusses the role of the optimization
plan in more detail.

To ensure that all the PACE tools have easy access to the information that they need, the PACE

Compiler injects critical information into each executable that it produces. For example, it records
both the location of the application’s working directory and its optimization plan in an initialized
static data item in each executable. At runtime, the RTS can retrieve that information and record
it directly with the performance data, to link the necessary information in a simple and explicit
way. This scheme eliminates the need for the executable and the RTS to access the centralized
knowledge base;7 instead, the information that they need is encapsulated in the executable.

1.3 Adaptation in the PACE Compiler

Adaptation is a key strategy embodied in the PACE compiler. All of the compiler components can
change their behavior in response to either internal or external feedback. Adaptation in the PACE

compiler falls into two categories: short-term adaptation that tailors the behavior of one executable
and long-term learning that changes the behavior of the compiler. We will implement four different
mechanisms to achieve adapatation: (1) characterization-driven adaptation, (2) offline feedback-
driven adaptation, (3) online feedback-driven optimization, and (4) long-term machine learning.
The mechanisms are summarized in Table 1.2 and described in the following sections.

In combination, these four mechanisms provide the compiler with the ability to adapt its be-
havior to the target system, the application, and the runtime situation. These mechanisms will
allow the PACE system to be flexible in its pursuit of runtime performance. We anticipate that in-
teractions between these mechanisms will produced complex optimization behavior.

1.3.1 Characterization-Driven Optimization

The concept of characterization-driven optimization forms the core of both the AACE program
and the PACE project. AACE compiler environments will include tools that measure performance-

7A centralized knowledge base can create the situation where the user either cannot run an executable unless it has network
access to the knowledge base or the user loses all feedback information from such runs. Neither is a good scenario.

1.3. ADAPTATION IN THE PACE COMPILER 9

critical characteristics of the target system and transformations that use those measured charac-
teristics as an integral part of the optimization process. In the PACE compiler, for example, the
non-polyhedral loop optimizations will use the measured parameters of the memory hierarchy to
choose tile sizes, while the tool that regenerates C source code will tailor the number of concur-
rently live values to the number of such values that the target system’s compiler can maintain in
registers. We will also investigate new transformations suggested by the characterization work.8

Characterization-driven adaptation is a simple form of long-term learning. It relies on algo-
rithmic adaptation to pre-determined parameters. The compiler writers identify parameters that
the RC tools should measure. They implement the transformations that use the results from the RC

tools. This process automatically adapts the transformation to the target system; it does not take
into account any properties of the application or its data set.

Characterization-driven optimization makes its adaptation at installation time, when the RC

tools run. The adaptation can be repeated by running the RC tools to generate a new target-system
characterization. The results of this adaptation are persistent; they last until the RC tools are re-run.

1.3.2 Offline Feedback-Driven Optimization

The second strategy for adaptation in the PACE compiler is the use of offline feedback-driven opti-
mization. This strategy produces a short-term adapation. The actual mechanism for implementing
feedback-directed optimization in PACE is simple. The AAP, PAO, and TAO each consult the applica-
tion’s optimization plan before they transform the code (see § 3.2.3). Changes to the optimization
plan change the behavior of these components. This design simplifies the implementation and
operation of an adaptive compiler. It does not, however, provide a clear picture of how PACE will
perform offline, feedback-driven adaptation.

In principle, any component in the PACE system can change the optimization plan for the cur-
rent compilation of an application. In practice, we will explore three strategies for controlling of-
fline feedback-driven adapation.

• The compiler driver may use an external adaptive controller to change the optimization plan
across multiple compile-execute cycles. We anticipate that this mechanism would modify
gross properties of optimization, such as the specific transformations applied and their rela-
tive order or the compilation path (full, short, or LLVM backend).

• Any phase of the compiler may contain an optimization pass that performs self-adapatation.
For example, the non-polyhedral loop optimizations in the PAO might consider several trans-
formation strategies; to choose among them, it can generate each alternative version of the
loop nest and invoke the PAO–TAO query mechanism to have the TAO estimate some apsects
of performance. In a similar way, the TAO might consider multiple strategies for algebraic
reassociation and choose between them based on an estimate of execution efficiency from
the instruction scheduler.

• One phase of the compiler may change the optimization plan for another phase, based on
the code that it generates. We envision this facility as serving two different needs. It allows
one phase to disable transformations that might reduce the impact of a transformation that
it has applied. For example, the PAO might disable loop unrolling in the TAO to prevent the
TAO from de-optimizing a carefully tiled loop nest. This adaptation occurs within a single
compilation.

Alternatively, one phase might provide feedback to another phase in the next compilation.
For example, if the TAO discovers that the code needs many more registers than the target

8The polyhedral optimizations generate code that is parameterized by tile sizes; the mechanism that selects values for those
parameters will use the results generated by the RC tools.

10 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

system (hardware + compiler) can supply, it might change the AAP’s optimization plan to
forbid inline substitution in the region. Similarly, it might tell the PAO to reduce its unroll
factors.

While these offline feedback-driven adapations can produce complex behavior and subtle adapta-
tions, their primary impact is short term; they affect the current compilation (or, perhaps, the next
one). They do not build predictive models for later use, so they are not learning techniques.9

1.3.3 Online Feedback-Driven Optimization

The third strategy for adaptation in the PACE system is the use of online feedback-driven optimiza-
tion. Because the performance of optimized code can depend on the runtime state of the system on
which it executes, even well planned and executed transformations may not produce the desired
performance. Issues such as resource sharing with other cores and other processors and interfer-
ence from the runtime behavior of other applications can degrade actual performance.

To cope with such dynamic effects, PACE includes a mechanism that lets the compiler set up a
region of code for runtime tuning. The PAO establishes runtime parameters to control the aspects
of the code that it wants the runtime to adjust. It generates a version of the code for that region
that uses these control parameters to govern the code’s behavior. Finally, it creates a package of
information that the RTS needs to perform the runtime tuning (see § 10.3.4). The RTS uses that
information to find, at runtime, settings for the control parameters that produce good performance.
The result should be an execution that tunes itself to the actual runtime conditions.

As an example, consider blocking loops to improve locality in the memory hierarchy. The com-
piler could assume that it completely understood memory behavior and use fixed tile sizes. Alter-
natively, it could recognize that interference from other threads and other applications can impact
optimal tile size, and thus it could generate code that read tile dimensions from a designated place
in memory. In this latter scheme, the runtime system could use performance counter information,
such as the L2 cache miss rate, to judge performance and vary the tile size accordingly.

The PACE RTS both defines and implements an API for online, feedback-driven optimization
(see § 10.3.4). The API lets the compiler register tunable parameters and suggested initial values,
and provides a runtime search routine (an adaptive controller) that the RTS can use to vary those
parameters. The RTS will collect the data needed by the runtime search routine and ensure that it
is invoked periodically to reconsider the parameter values.

Online feedback-directed optimization produces a short-term adaptation of the application’s
behavior to the runtime situation—the dynamic state of the system and the input data set. The
technique, by itself, does not lead to any long-term change in the behavior of either the PACE sys-
tem or the application. However, the RTS will record the final parameter values along with its record
of the the application’s performance history. Other components in PACE may use these final pa-
rameter values as inputs to long-term learning.

1.3.4 Machine Learning

The fourth strategy for adaptation in the PACE system is to apply machine learning techniques to
discover relationships among target system characteristics, application characteristics, compiler
optimization plans, and variations in the runtime environment. Machine learning is, by definition,
a long-term strategy for adaptation. The PACE ML tools will derive models that predict appropriate
optimization decisions and parameters. We have identified several specific problems to attack with
ML techniques (see § 11.2.2).

9In the ACME system, we coupled this kind of adaptation with a persistent memoization capability and randomized restart.
The result was a longer-term search incrementalized across multiple compilation steps [25].

1.3. ADAPTATION IN THE PACE COMPILER 11

A central activity in the design of a machine-learning framework for each of these problems is
the design of a feature vector for the problem—the set of facts that are input to the learned model.
The PACE system provides an information rich environment in which to perform learning; the ML

tools have the opportuntity to draw features from any other part of the environment—the RC tools,
the compiler tools, and the RTS tools. The determination of what features are necessary to build
good predictive models for various compiler optimizations is an open question and a significant
research issue in PACE. We anticipate that, in the project’s early stages, we will need to construct
tightly controlled experiments to build the input data. As the project progresses, we will study how
to distill the necessary data from performance records of actual applications compiled with the
PACE system.

The goal of learning research in the PACE project is to create a process that will automati-
cally improve the PACE system’s behavior over time. Offline learning tools will examine records of
source code properties, optimization plans, and runtime performance to derive data on optimiza-
tion effectiveness, and to correlate source-code properties with effective strategies. This knowledge
will inform later compilations and executions.

The PACE compiler will use ML-derived models directly in its decision processes. As the ML

models mature, the compiler will replace some static decision processes and some short-term
adaptive strategies with a simpler implementation that relies on predictions from ML-derived mod-
els.

12 CHAPTER 1. OVERVIEWOF THE PACE SYSTEM

Chapter 2

Resource Characterization in the

PACE Project

Resource characterization plays a critical role in the PACE Project’s strategy for building
an optimizing compiler that adapts itself and tunes itself to new systems. The PACE

Compiler and the PACE Runtime System need access to measurements of a variety of
performance-related characteristics of the target computing system. The goal of the
PACE Resource Characterization subproject is to produce those measured values.

2.1 Introduction

The ability to derive system performance characteristics using portable tools lies at the heart of the
AACE Program’s vision and the PACE Project’s strategy for implementing that vision. The Resource
Characterization (RC) subproject of PACE is building tools, written in a portable style in the C lan-
guage, to measure the specific performance characteristics that are of interest to the PACE Compiler
and the PACE Runtime System.

2.1.1 Motivation

The PACE Compiler and the PACE Runtime System rely on the values of a number of performance-
related system parameters, or characteristics, to guide the optimization of an application program.
The RC subproject is developing tools that produce those specific values in reliable, portable ways.

The design of the PACE Compiler and Runtime System both limits and focuses the RC subpro-
ject. The PACE compiler is a source-to-source optimizing compiler. While the system will be capa-
ble of generating native code for a limited set of target processors, the primary mode of operation
for the compiler is to generate the transformed program as a C program. This strategy, dictated
by the AACE program goals, provides portability. It also prevents the PACE compiler from applying
some optimizations, such as instruction scheduling. These limitations, in turn, provide a sharp fo-
cus for the RC subproject; the RC tools should not measure characteristics that the other PACE tools
cannot use.

With this restriction, the RC project still has many characteristics that it must measure. (See
Table 2.2 for a full list of the characteristics measured in Phase 1 of the AACE Program). As an
example, consider the information needs of the PAO’s non-polyhedral loop transformations. The
transformations need to know the geometry of the cache hierarchy—that is, for each level of the
hierarchy, the size, the associativity, and the granularity (line size or page size) of that level. Thus,
the RC tools should derive those numbers.

Why not obtain the numbers from reading the manufacturer’s documentation? The AACE pro-

Principal Contacts For This Chapter: Timothy J. Harvey, harv@rice.edu, and Keith Cooper, keith@rice.edu

13

14 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE PROJECT

gram depends on a strategy of deriving these characteristics rather than supplying them in some
configuration file. Our experience, over the first year of the RC project, suggests that this strategy is
actually critical, for several reasons.

1. The compiler needs to understand the characteristics as they can be seen from a C source
program. For example, the documentation on a multicore processor may list the level two
data cache size as 512 kilobytes.1 The amount of level two cache available to the program,
however, will depend on a number of factors, such as the size of the page tables and whether
or not they are locked into the level two cache, the number of processors sharing that level
two cache, and the sharing relationship between the instruction and data cache hierarchies.
In short, the number in the documentation would mislead the compiler into blocking for a
larger cache than it can see.

2. The documentation, even from the largest manufacturers, is often incomplete or inaccurate.
Documentation on the memory hierarchy focuses on the capacity of the largest level; it rarely
describes the delay of a level one cache or TLB miss. Equally problematic, the documents
provide inconsistent information; we studied one processor manual that provides multiple
conflicting latencies for the integer divide operation, none of which match the numbers that
our carefully constructed microbenchmark measures.

3. The characteristics themselves can be composite effects that result from the interaction of
multiple factors. For example, the AAP and the PAO want to understand the rough cost of a
function call for use in the decision algorithms that guide both inlining and outlining. The
cost of a function call depends, however, on specific details of the target system’s calling
convention, the manner in which the native compiler generates code for the call, the number
of parameters and their source-language types, and the presence or absence of optimizations
for recursive calls and leaf-procedure calls in the native compiler. The amalgamation of all
these factors makes it difficult, if not impossible, to derive reasonably accurate numbers from
reading the manufacturer’s manuals.

In addition, the PACE system is intended to adapt itself to both current and future architectures.
From this perspective, the design of the RC system should minimize its reliance on idiosyncratic
knowledge of current systems and current interfaces. The AACE program assumes that future sys-
tems will support the POSIX standard interfaces. Thus, the RC tools rely on POSIX for interfaces,
such as a runtime clock for timing, and for information about operating system parameters, such
as the page size in the virtual memory system.2 They cannot, however, assume the presence of
other runtime interfaces to provide the effective numbers for system characteristics that the PACE

compiler and runtime system need. Thus, the PACE Project derives numbers for most of the char-
acteristics used by the PACE Compiler and Runtime System.

2.1.2 Approach

To measure the system characteristics needed by the PACE Compiler and Runtime System, the RC

project uses a series of microbenchmarks—small programs designed to expose specific character-
istics. Each microbenchmark focuses on eliciting a specific characteristic from the system—from
the cost of an integer addition through the ability of the compiler to vectorize specific loops. This
approach produces a library of microbenchmark codes, along with a harness that installs and runs
those codes.

1Many manufacturers provide an interface that exposes model-dependent system parameters, such as the size and struc-
ture of the levels in the memory hierarchy. For example, Intel processors support its cpuinfo protocol. Unfortunately, such
facilities vary widely in their syntax and the set of characteristics that they support. PACE cannot rely on their presence.
2Page size and line size are measurements where the effective size and the actual size are, in our experience, identical.

2.2. FUNCTIONALITY 15

�
�

�
�

PACE Resource
Characterization Tools

�
�
�
�
�
�>

-

Z
Z
Z
Z
Z
Z~

Config
File

?

�

�
	PACE Runtime

System

�
�

�

PACE Compiler

�

�
	PACE Machine

Learning Tools

Figure 2.1: Interfaces to the PACE Resource Characterization Tools

Development of microbenchmark codes has occupied the majority of our time in Phase 1 of
the project. The individual microbenchmarks include both a code designed to elicit the effect and
a code that analyzes the results and reduces them to one or more characteristic values. Developing
the Phase 1 microbenchmarks has been challenging. Designing a code to elicit the desired effect
(and only that effect) has required, in every case, multiple iterations of the design-implement-test
cycle. In many cases, it has required the invention of new measurement techniques. The analysis
of results can be equally challenging. The experimental results that expose a given effect contain
noise. They often expose interference from other effects. The data analysis problems are, in some
cases, harder than the problem of exposing the effect.

The result of this effort is a library of microbenchmarks that both elicit system behavior and
analyze it. Those codes, written in a portable style of C, rely on the POSIX interface to system re-
sources and on a handful of common POSIX tools, such as the make utility. In their current state,
they provide the compiler with a sharp picture of the resources available on a new system.

2.2 Functionality

2.2.1 Interfaces

The primary task of the RC tools is to produce data used by the other major components of the
PACE system: the PACE Compiler, the PACE Runtime System, and the PACE Machine Learning tools.
As shown in Figure 2.1, the RC tools take as their primary input a system configuration file. The
tools use the native C compiler, system calls supported in the POSIX standard, and some additional
software tools, as specified in Table 2.1.

2.2.2 Inputs

The primary input to the RC tools is the configuration file for the target system. This file, whose
format is specified by the AACE Task 2 teams, contains basic information on the target system. The
RC tools need for this information, supplied in a human-written configuration file, to include at
least:

1. The location, name, and invocation sequence for the native compiler and linker. The RC

tools need syntax to invoke the native compiler, link against standard libraries, create an
executable image, run that image, and connect disk files to input and output streams. (Under
POSIX systems with the bash shell and the standard C libraries, much of this knowledge is
standard across systems.)

16 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE PROJECT

2. A specific command set to compile and link for vectorization, if it is supported by the native
compiler. This command set must be distinct from the default command set.

3. A set of optimization flags to use with the native compiler during resource characterization.
These flags are provided by the system installer in the configuration file. These flags must
include the options necessary to produce the appropriate behavior from each microbench-
mark. In gcc terms, the flag -O2 appears to be sufficient.

4. Basic information on the target system, as described on page 10 of DARPA BAA-08-30, which
solicited proposals for the AACE program. This information includes microprocessors and
their components; number of cores; clock rate(s) of the processors; memory architecture
on a processor; memory architecture on a node or system; number of chips (memory and
processors) per node; interconnection of nodes; and composition of the processing system.

2.2.3 Output

The PACE RC tools produce, as output, a set of measured characteristic values. Those values are
available in two forms: an XML-format file that is consumed by the AACE Task 2 teams’ grading pro-
grams, and an internal format used by the interface that the RC tools provide for the PACE Compiler,
Runtime System, and Machine Learning tools. § 2.2.1 provides more detail on these interfaces.

Table 2.2 shows the characteristic values measured by the PACE RC tools submitted for the end-
of-phase trials in Phase 1 of the project (the first eighteen months). These characteristics range
from broad measurements of target system performance, such as the number of compute-bound
threads that the processor can sustain, through microarchitectural detail, such as the latency of an
integer divide operation. Each characteristic will be used elsewhere in the PACE system. Table 2.4
gives a partial list of those uses. As development work on the PACE Compiler and Runtime System
proceed in Phase 2 of the project, we anticipate adding to the list of characteristics.

Note that the PACE RC tools do not report units of time. Varying timer precision on different
systems and the possibility of varying runtime clock speeds make it difficult for the tools to report
time accurately. Instead, we report latencies in terms of the ratio between the operation’s latency
and that of integer addition.

The lists shown in Table 2.2 do not include all of the characteristics that the PACE project will
measure. We have additional microbenchmarks in a variety of stages of development, shown in
Table 2.3. These codes will be released and documented as they reach a stable state. Neither table
includes measurements of bandwidth. PACE will use the industry-standard STREAM benchmarks
as our initial tool to measure bandwidth.

Item Description

C compiler Native compiler, as specified in the configuration file; must be able
to produce an assembly-code listing

MPI library Standard-conforming MPI library, with location and linker flags
specified in configuration file

OPENMP library Standard-conforming OPENMP library, with location and linker flags
specified in configuration file

Utilities Standard Linux commands, including autoconf, automake, awk,
grep, make, sed, wc, and the bash shell

Table 2.1: Software Requirements for the PACE RC Tools

2.3. METHOD 17

Category Name Units Notes

Cache

Capacity / Size Bytes Effective size

Line Size Bytes

Associativity Integer Only reported for L1 cache

Value of zero implies full associa-
tivity

Latency Cycles Assumes int32 add takes one cycle

TLB
Capacity / Size Bytes Total footprint of TLB

Page Size Bytes From Posix sysconf()

Operations

Ops in Flight Integer +, -, *, /, for int32, int64, float, dou-
ble
Maximum number of operations
in progress by type

Op Latencies Cycles +, -, *, /, for int32, int64, float, dou-
ble
Assume int32 add takes one cycle

System
Compute Bound Threads Integer Test must run standalone

Memory Bount Threads Integer Test must run standalone

Compiler
Live Ranges Integer int32, int64, float, double

Number of simultaneous live
ranges that native compiler can
maintain without spilling

Table 2.2: PACE Characteristics Submitted to Phase 1 End-of-Phase Trials

While the RC tools should, in principle, measure all those properties of the target system and
its software environment that have an impact on optimization in the PACE Compiler and Runtime
System, the project’s schedule and the available personnel limit, in practice, the number of char-
acteristics that we can measure.

The Phase 1 characteristics ignore the effect of load on the system. Phase 2 will expand the cov-
erage of measured characteristics in several ways. We will explore the impact of load and sharing
on some of the Phase 1 characteristics. We will expand the set of compiler properties that the tools
measure. (The compiler characteristics will govern how the AAP, PAO, and TAO express the compu-
tation and will allow those tools to tailor the form of the transformed C source code to the strengths
and weaknesses of the native compiler.) Finally, we will include new characteristics for which the
compiler discovers a need. For example, the vectorization strategy proposed for the PACE compiler
will be more robust if RC discovers hardware vector lengths and alignment restrictions.

2.3 Method

The PACE RC subproject is developing two kinds of tools. The first set of tools uses microbench-
marks to elicit specific behaviors from the target system and analyze the results of those tests to
determine characteristic values. The second set of tools takes the results of the microbenchmark
tests and produces output data for the two interfaces used by consumers of the characteristic val-
ues. The measurement and analysis tools must run under the benchmarking harness provided
by the AACE Task 2 teams. That process is controlled by a set of makefiles—inputs to the utility
program make. The makefiles for the testing harness also invoke the tool that generates the XML

18 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE PROJECT

Category Name Units Notes

Memory Access Cost by Stride Function Returns next “sweet spot” in stride
in range 1 to page size

Operations Procedure Call Cost Cycles Working to define what the com-
piler needs

MPI
Latencies Cycles Latency of MPI & pthread various

primitives
Assumes int32 add takes one cycle

Latency structure unsure Working to undertand the com-
piler’s needs

Cache

I-Cache Capacity Bytes Effective capacity
May need more than Posix

I-cache—D-cache sharing Graph Needs I-cache benchmark & other
support
Currently runs on Linux systems

D-cache sharing Graph Sharing between cores
Needs thread affinity support
Runs on Linux

Compiler

Array vs. Pointer
Ratio

Microbenchmark written
Access Costs Needs further testing

Vector speedup Ratio Microbenchmark written
Access Costs Needs further testing

Multiply-add Boolean Microbenchmark written
Access Costs Needs further testing

Table 2.3: PACE Characteristics in Progress at the End of Phase 1

format file for the Task 2 teams’ grading programs. We are preparing publications, either papers or
technical reports, that describe the methods used in the individual microbenchmarks. § 2.3.1 de-
scribes one microbenchmark as an example: the method used to compute one set of characteristic
values—the number of concurrent integer live values that the target processor and native compiler
can support. § 2.3.2 describes the interfaces that the other tools use to access the characterization
results.

2.3.1 Producing Characteristic Values

Conceptually, each microbenchmark consists of two distinct pieces: a code designed to expose the
characteristic and a code that analyzes the resulting data to derive a value for the characteristic.
The complexity of these codes varies from characteristic to characteristic.

When the PACE compiler emits transformed C source code for an application, it should ensure
that the transformed source code does not need more registers than the combination of native
compiler and target processor can supply. To that end, the PACE RC tools include a microbench-
mark that measures the number of concurrently live values that the native compiler can accommo-
date before it starts to spill those values.3 This microbenchmark, referred to as the live range mi-
crobenchmark, uses some of the same concepts that arise in other microbenchmarks, such as the
latency benchmarks for arithmetic operations. The analysis for this microbenchmark is unusual
in that it analyzes the assembly-language output of the native compiler (rather than executing the

3In register allocation, to “spill” means to store a value in memory rather than in a register.

2.3. METHOD 19

Value Tool Use

DCache Capacity
PAO Tiling memory hierarchy 1DCache Line Size

DCache Associativity

TLB Capacity
PAO Tiling memory hierarchy 1

TLB Page Size

ICache Capacity PAO Loop unrolling
AAP, PAO

Inlining & outlining decisions
TAO

Operations in Flight TAO Compute critical path length for PAO queries
PAO, TAO Estimate & adjust ILP

TAO Instruction scheduling 2

Operation Latency TAO Algebraic reassociation of expressions
TAO Operator strength reduction
TAO Compute critical path lengths for PAO queries
RC Compute throughput

Procedure Call Cost
AAP, PAO,

Inlining & outlining decisions
TAO

Compute-bound Threads
PAO Adjusting parallelism

Memory-bound Threads

Live Values TAO Answering PAO queries
Tailoring C output to native compiler

Array vs. Pointer Costs TAO Tailoring C output to native compiler

Sequential vs Parallel Loop PAO, TAO Rewriting vector computations

Multiply-add TAO Algebraic reassociation
Compute critical path lengths for PAO queries

1 Both polyhedral transformations (see § 6) and AST-based transformations (see § 7)
2 We may modify the scheduler in the native TAO backend, to use derived latencies as a way to improve portability. The
TAO’s query backend (see § 9.3.4) may also perform instruction scheduling to estimate execution costs.

Table 2.4: Optimizations That UseMeasured Characteristics

20 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE PROJECT

Code Live Values
...

...
add r101 r102 => r103 r102, r101
add r102 r103 => r104 r103, r102
add r103 r104 => r105 r104, r103
add r104 r105 => r106 r105, r104

...
...

Streamwith Register Pressure of Two

Code Live Values
...

...
add r100 r102 => r103 r102, r101, r100
add r101 r103 => r104 r103, r102, r101
add r102 r104 => r105 r104, r103, r102
add r103 r105 => r106 r105, r104, r103

...
...

Streamwith Register Pressure of Three

Code Live Values
...

...
add r102−N r102 => r103 r102, r101, · · · , r102−N
add r103−N r103 => r104 r103, r102, · · · , r103−N
add r104−N r104 => r105 r104, r103, · · · , r104−N
add r105−N r105 => r106 r105, r104, · · · , r105−N

...
...

Streamwith Register Pressure of N

Figure 2.2: How to Use Names to Control Register Pressure in a Stream

2.3. METHOD 21

output of the native compiler).

The live range benchmark consists of a suite of codes, each of which is compiled and analyzed.
Each individual code contains a stream of operations that is carefully designed to exhibit a specific
demand for registers, or register pressure. A “stream” of operations, in the RC context, means a
sequence of operations that are constrained by data dependences to execute in a serial fashion.
We control the register pressure through the naming scheme used for values in the operations.
Figure 2.2 shows how the pattern of names used in a stream of add operations controls register
pressure.

The microbenchmark consists of a set of codes, each with one long basic block. The set includes
codes that have pressure 2, 3, 4, . . . 256. The test harness for this microbenchmark compiles each
of these codes, using the compiler flag (from the configuration file) that produces an assembler-
code listing. The analysis then measures the number of non-comment lines in the assembler code
generated by the native compiler for each code. The analysis produces a series of data points, such
as shown in Table 2.5.

Each line in Table 2.5 shows the results obtained for the code with a given register pressure; the
register pressure is shown in the leftmost column. The next three columns show the number of
non-comment lines in the assembler code listing for each of integer registers, floating-point regis-
ters, and double-precision floating-point registers.

While the results show minor variation, the major effect for integers occurs at pressure of fifteen,
suggesting that the compiler begins spilling after it has used fourteen registers. With floating-point
and double-precision values, the significant increase occurs after sixteen registers. Red lines in the
table show the significant break points in the data. These results make intuitive sense; the linkage
convention reserves a couple of integer registers for its own purposes, such as the activation record
pointer and the return address, while all of the floating-point registers are available to the allocator.

Notice the noise in the data. Such noise is a larger factor in benchmarks that rely on measured
running times. In designing a microbenchmark, we try to build a code that will exhibit a significant
jump in the measured behavior when it reaches the characteristic value. In this microbenchmark,
the length of the block determines the size of the jump when the compiler begins to spill. For this
microbenchmark, the use of longer blocks amplifies the measured effect and, thus, reduces noise,
so longer blocks are better, subject to the twin concerns that compile times tend to rise nonlinearly
in the length of the source-code compilation unit, and that overly long blocks cause some com-
pilers to fail. Thus, block length is chosen as a compromise between the desire to have the effect
clearly delineated in the data and the problems that arise in compiling longer blocks.

Coordinating Values Between Microbenchmarks Some microbenchmarks need access to val-
ues computed by other tests. For example, a number of the microbenchmarks need access to the
size of the level one cache. To allow for such sharing, the RC tools create a temporary directory and
communicate it, using an environment variable, to the individual microbenchmarks. The individ-
ual microbenchmarks read and write files in the temporary directory.

The memory hierarchy benchmarks compute many of the characteristic values using multiple
diverse tests. A summary pass then compares those results and reports consensus numbers to the
software that produces the data for external consumption—either the XML interface or the internal
interface to other PACE tools.

2.3.2 Reporting Characteristic Values

Two distinct kinds of tool use the values produced by the RC tools: the AACE Task 2 teams’ testing
programs and the other PACE tools. The RC toolset supports a distinct interface for each of these
consumers.

22 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE PROJECT

Code Length

Pressure Integers Floats Doubles

2 1070 1075 1075
3 1070 1066 1066
4 1070 1068 1068
5 1071 1072 1072
6 1071 1074 1074
7 1071 1074 1074
8 1070 1075 1075
9 1071 1079 1079

10 1073 1080 1080
11 1073 1083 1083
12 1080 1083 1083
13 1083 1084 1084
14 1096 1089 1089
15 1350 1089 1089
16 1394 1093 1093
17 1488 1315 1315
18 1518 1358 1358
19 1646 1393 1393
20 1667 1423 1423

Table 2.5: Measurements from the Live RangeMicrobenchmark Compiled for an Intel T9600

XML Interface

The AACE Task 2 Teams (the Blackjack and MAACE teams) have defined an XML schema for report-
ing results to their testing programs. Accordingly the PACE RC toolset includes a shell script that
takes the output of the various RC microbenchmarks and produces an XML report in the format
specified by the XML schema. That report is a flat text file.

The RC tools record their values in a flat text file. Values are recorded, one per line, as a pair:

name, value

where name is a fully qualified name for the characteristic that matches the tags in the XML schema
and value is the measured value. To produce the XML output file, the RC tools run a bash shell script
that reads the name, value pairs in the order specified by the Task 2 teams’ schema and constructs
the appropriate XML code. The script uses the standard utilities grep and awk.

Interface to Other PACE Tools

The XML interface developed for the end-of-phase tests performed by the AACE Task 2 teams is
unsuitable for use by the other PACE tools for several reasons.

• The XML interface is only defined for a subset of the characteristics that we measure; for ex-
ample, access cost by stride was deemed too complex to represent in a flat format. The other
PACE tools need access to the full set of measured values.

• The XML interface forces the consuming program to parse and understand the XML file. The
PACE tools need a simpler interface. When a tool needs the size of the level one cache or the

2.3. METHOD 23

rough cost of a function call, the query should be simple and direct; it should return a single
unequivocal number.

• The XML schema makes no provision for annotations on a value. The interface for the PACE

tools will include a facility for annotations that describe exceptional conditions, including
but not limited to: the microbenchmark that produces the value failed to report a number;
the value produced made no sense; and the value returned is an assumed value rather than
a computed value.4

• The PACE tools need a stable interface. The XML schema changes to accommodate the needs
of the testing and evaluation process. The PACE tools need a simple procedural interface that
remains stable over the development cycle of the PACE tools.

To that end, the PACE RC tools will provide a procedural interface to the values that they produce.
The RC tools will store their results in an internal file, hereafter referred to as the repository. The
procedural interface will use the repository as the source for its values.

The repository will use an expanded version of the XML schema proposed by the Task‘2 teams.
PACE will add both new characteristics and new attributes (or fields) to the scheme to represent
the annotations that the compiler needs. We have not yet completed the design of the expanded
schema.

The details of the interface have not been finalized. Our initial prototype will consist of the
following procedures:

Management Functions

int rc init() Initializes the RC interface. Returns 1 if successful or a negative
number as an error code.

void rc final() Closes the RC interface and deallocates its data structures. Suse-
quent queries will fail.

Queries

void *rc query(char *s) s is a string that identifies the characteristic value. The call re-
turns a structure that contains the result.

The format of the structure returned by rc query will evolve as the uses of the RC-produced data
evolves in rest of the PACE system. The structure will include both values and annotation about the
veracity of the values.

4For example, if the RC tools failed to discover the operating system page size, a value of 4,096 bytes is a reasonable assump-
tion on most POSIX systems.

24 CHAPTER 2. RESOURCE CHARACTERIZATION IN THE PACE PROJECT

Chapter 3

An Overview of the PACE Compiler

The PACE compiler lies at the heart of the project’s strategy to provide high-quality,
characterization-driven optimization. The compiler uses a series of analyses and trans-
formations to rewrite the input application in a way that provides better performance
on the target system. The compiler supports feedback-driven optimization. It works
with the RTS to implement runtime variation of optimization parameters. It has a mech-
anism to incorporate new optimization strategies derived by the ML tools.

3.1 Introduction

The PACE Compiler is a source-to-source optimizing compiler that tailors application code for ef-
ficient execution on a specific target system. It accepts as input parallel programs written in C with
either MPI or OPENMP calls. It produces, as output, a C program that has been tailored for efficient
execution on the target system.

As shown in Figure 1.2, the PACE Compiler is as a series of tools that work together to create
the optimized version of the application. Each of these tools is a complex system; each is discussed
in its own chapter of the design document (see Table 1.1). This chapter serves as an introduction
to the separate tools in the PACE Compiler and their interactions; § 3.3 discusses each of the com-
ponents. Subsequent chapters provide more detail. This chapter also addresses the high-level,
cross-cutting design issues that arise in the PACE Compiler.

3.2 Functionality

While the PACE Compiler is a collection of tools, it presents the end user with functionality that
is similar to the functionality of a traditional compiler. The user invokes the PACE Compiler on
an input application and the compiler produces executable code. To perform its translation and
optimization, the PACE Compiler draws on resources provided by the rest of the PACE system, as
shown in Figure 3.1. Because most of these interfaces are internal and most of the components are
automatically controlled, the internal complexity of the PACE Compiler is largely hidden from the
end user.

3.2.1 Input and Output

The PACE Compiler accepts, as input, an application written in C with calls to MPI or OPENMP
libraries. The compiler assumes that the input program is a parallel program; while the compiler
will discover some opportunities to exploit parallelism, detection of all available parallelism is not
the focus of the PACE project.

Principal Contacts For This Chapter: Keith Cooper, keith@rice.edu, Vivek Sarkar, vsarkar@rice.edu, and Linda
Torczon, linda@rice.edu

25

26 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

�
�

�
�PACE Compiler

?

Source
Code

?

Executable
Code

PACE Runtime
System
�������)

PACE Machine
Learning Tools

PPPPPPPq

PACE Characterization
Tools

-

Optimization
Plan
XXXXXXXXXXXXz

Config
File

�

Figure 3.1: Interfaces to the PACE Compiler

The PACE Compiler produces, as output, an executable version of the input application, trans-
formed to improve its performance on the target computer system. The compiler has several ways
to generate executable code for the application. It can generate transformed C code and use the
vendor-supplied native compiler to perform code generation. For some systems, it can use the
LLVM backend to generate code (see § 3.4). The choice of code generators will depend on the qual-
ity of the native compiler and the availability of an LLVM backend for the system.

3.2.2 Interfaces

Figure 3.1 shows the primary interfaces between the PACE Compiler and the rest of the PACE sys-
tem. The PACE Compiler uses information from several sources.

• Characterization: The PACE RC tools measure performance characteristics of the combined
hardware/software stack of the target system. The PACE Compiler uses those characteristic
values, both to drive optimizing transformations and to estimate the performance of alterna-
tive optimization strategies on the target system.

• Machine Learning: The PACE ML tools will provide suggestions to the compiler to guide the
optimization process. The ML tools communicate those suggestions by modifying the opti-
mization plan for a given application or, perhaps, one of the default optimization plans.

• Runtime System: The PACE RTS will provide the compiler with measured performance data
from application executions. This data will include detailed profile information. The Run-
time System will pinpoint resource constraints that create performance bottlenecks.

• Optimization Plan: The PACE Compiler will coordinate its internal components, in part, by
using an explicit optimization plan. The optimization plan is discussed in § 3.2.3.

• Configuration File: The configuration file is provided as part of system installation. It con-
tains critical facts about the target system and its software configuration (see § 3.3). Its format
is specified by the AACE Task 2 teams.

The compiler embeds, in the executable code, information of use to the Runtime System, such as
a concise representation of the optimization plan and data structures and calls to support runtime
tuning of optimization parameters (see § 5.3.8 and 10.3.4). By embedding this information directly
in the executable code, PACE provides a simple solution to the storage of information needed for

3.2. FUNCTIONALITY 27

�

�
	Application-Aware

Partitioner (AAP)

?�

�
	Platform-Aware

Optimizer (PAO)

?

PAO→TAO
Query Interface?

6

?

�

�
	PAO→TAO IR

Translator

?�

�
	Target-Aware

Optimizer (TAO)

@
@
@R?

Optimized
IR

Optimized
C Code�

�
	Native

Compiler

�

�
	Native

Compiler

�

�
	LLVM

Backend

Source
Code

?�

�
	Compiler

Driver
-

� -

� -

� -

Legend:

Code -
Information -

Figure 3.2: Structure of the PACE Compiler

feedback-driven optimization and for the application of machine learning to the selection of op-
timization plans. It avoids the need for a centralized store, like the central repository in the Rn

system of the mid-1980s. It avoids the complication of creating a unique name for each compila-
tion, recording those in some central repository, and ensuring that each execution can contact the
central repository.

3.2.3 The Optimization Plan

To provide the flexibility that the PACE Compiler needs in order to respond to different applications
and different target systems, the compiler needs a mechanism for expressing and recording opti-
mization plans. The primary mechanism for changing the PACE Compiler’s behavior is to suggest
an alternate optimization plan. An optimization plan is a concrete representation of the transfor-
mations applied during a compilation. An optimization plan must specify, at least, the following
items:

1. The location, i.e., the file system path, to the working directory for the application;

2. the compilation path taken for each RPU (e.g., full compilation path, short compilation path,
or LLVM backend path).

3. The transformations that should be applied by the AAP, along with parameters to those trans-
formations;
For each RPU:

4. the transformations that should be applied by the PAO and the TAO (see Figure 3.3), along
with any parameters or commands that control those transformations.

5. The suggested order (if any) of those transformations;

6. additional inputs, if any, to the PAO, Sage→LLVM translator, TAO, and native compiler.

28 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

When the user invokes the compiler driver to prepare an application, the compiler driver provides
a default optimization plan for the first compile. The executable is prepared using that default
plan; the code is executed on user-provided representative data; and the RTS gathers performance
statistics on that execution.

On the second compile, the AAP uses performance measurements from the RTS to guide its op-
timizations; for example, context-senstive profile information will play a role in decisions about
both inline substitution and partitioning the code into RPUs. As it refactors the code, the AAP tries
to place together pieces of the program that have similar rate-limiting resources—with the assump-
tion that similar rate-limiting resources imply a similar optimization plan.

The compiler driver then initializes the optimization plan for each RPU. It uses the rate-limiting
resource information from each RPU to identify an initial plan for the RPU, drawn from a set of
prefabricated plans. Possible rate-limiting resources include cache locality, ILP, multicore paral-
lelism, and register pressure. Whenever the AAP’s partition of the application into RPUs changes,
the optimization plans for the RPU will be re-initialized.

The optimization plan guides the compiler components as they translate and transform the
individual RPUs, in the second and subsequent compilations. The mechanism to change the be-
havior of those components is to change the optimization plan. In principle, any component of the
compiler can change the optimization plan and affect the behavior of other components. In PACE,
we will focus our attention on the kinds of changes described in § 1.3.2.

The definitive representation of an optimization plan resides in a file in the application’s work-
ing directory. To simplify the handling of information in the PACE tools, the compiler will insert
a concise representation of the optimization plan as data into the object code produced by any
specific compilation.1

3.3 Components of the PACE Compiler

The PACE Compiler has a number of major components, shown in Figure 3.2.

Compiler Driver

The compiler driver provides the application programer with their interface to the PACE Compiler.
To compile a program, the programmer creates a directory that contains the source code for the
application and for any libraries that are to be optimized with it. Next, the programmer invokes the
compiler driver on that directory.

The compiler driver has two key responsibilities: managing the compilation process and cre-
ating a location for the results of this compilation in the PACE system’s distributed repository. We
will defer discussion of the first task until the other components have been described (see § 3.4).

The PACE Compiler stores its work products, such as annotations, the optimization plan, inter-
mediate files, and analysis results, in a working directory created inside the application’s directory.
If the working directory does not yet exist, the compiler driver creates it. Within the working di-
rectory, the compiler driver creates a subdirectory for each compilation; it passes the location of
this directory to each of the other components that it invokes and ensures that the location is em-
bedded in the final executable code where the RTS can find it. The working directory becomes part
of the distributed repository. It contains the records of both compilation and execution for this
application.

1The format of the optimization plan, in the working-directory file and in the object-code file, has not yet been determined.

3.3. COMPONENTS OF THE PACE COMPILER 29

Application-Aware Partitioner

The first PACE Compiler component invoked by the compiler driver is the Application-Aware Par-
titioner (AAP). The AAP examines the source code for the entire application and refactors it into
refactored program units (RPUs) based on results from previous compilations, from previous exe-
cutions, and from its own analysis in the current compilation. The AAP has two primary goals:

1. To limit the size of any single compilation unit so that the rest of the compiler can do an
effective job of optimization;2 and

2. To group together procedures that have similar performance profiles and problems so that
they can be compiled using the same optimization plan.

The AAP, as part of refactoring, can change the number of implementations for any given procedure
using either inline substitution or procedure cloning.3 It will group together procedures into an RPU

that have an affinity—either the same rate limiting resource as identified by the RTS or a frequent
caller/callee relationship. It will pad, align, and reorder data structures.

Characterization Data structure padding and alignment transformations in the AAP will use
the measured data on the impact of stride on access time. As part of the compiler characterization
work in Phase 2, we will attempt to quantify the impact of RPU size on code quality.

Platform-Aware Optimizer

The compiler driver iterates through the RPUs created by the AAP. Each RPU serves as a compilation
unit. The driver invokes the Platform-Aware Optimizer (PAO) for each RPU, passing the location
of the working directory to it. The PAO applies analyses and transformations intended to tailor the
application’s code to platform-wide, or system-wide, concerns. Of particular concern are efficiency
in the use of the memory hierarchy and the use of thread-level parallelism. The PAO operates on
the code at a level of abstraction that is close to the original C source code.

The PAO finds the optimization plan for the application in the application’s working directory.
The PAO can modify the optimization plan executed by the AAP, PAO and TAO components. It mod-
ifies the AAP optimization plan across compilations, and the TAO optimization plan within a com-
pilation, generating commands that instruct and constrain the TAO in its code transformations.
PAO transformations include loop tiling, loop interchange, unrolling of nested loops, and scalar
replacement (see § 7). The PAO chooses transformation parameters, for example choosing unroll
factors for each loop in a multidimensional loop nest, based on the results of querying the TAO

through the PAO–TAO query interface (see § 5.3.5).

PolyhedralAnalysis andTransformationTools The PAO includes a subsystem that uses poly-
hedral analysis and transformations to reorganize loop nests for efficient memory access (see § 6).
The polyhedral transformations use parameters of the memory hierarchy, derived by the PACE RC

tools, and the results of detailed polyhedral analysis to rewrite entire loop nests.

Characterization The PAO uses the measured characteristics of the memory hierarchy in both
the polyhedral transformations and the non-polyhedral loop transformations. In Phase 2, we will
measure dynamic effects in the memory hierarchy, which should refine the effective numbers used
in the PAO.

2Evidence, over many years, suggests that code quality suffers as procedure sizes grow and as compilation unit sizes grow.
3Specifically, it should clone procedures based on values from forward propagation of interprocedural constants in the last
compilation. Out-of-date information may cause under-optimization; it will not cause a correctness problem [16].

30 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

PAO→TAO IR Translator

Because the PAO and the TAO operate at different levels of abstraction, the PACE Compiler must
translate the IR used in the PAO into the IR used in the TAO. The PAO uses the abstract syntax trees
in the SAGE III IR. The TAO uses the low-level linear SSA code defined by LLVM.

The translator lowers the level of abstraction of PAO IR, converts it into SSA form, and rewrites it
in TAO IR. Along the way, it must map analysis results and annotations created in the PAO into the
TAO IR form of the code. The compiler driver invokes the translator for each RPU, and passes it any
information that it needs.

Characterization The PAO→TAO IR translator does not directly use characterization data.

Target-Aware Optimizer

The Target-Aware Optimizer (TAO) takes code in IR form that has been tailored by the PAO for the
platform-wide performance characteristics and maps it onto the architectural resources of the in-
dividual processing elements. The TAO adjusts the code to reflect the specific measured capacities
of the individual processors. It also provides optimizations that may be missing in the native com-
piler, such as operator strength reduction, algebraic reassociation, or software pipelining.

The TAO will provide three distinct kinds of backend.

• On machines where the underlying LLVM compiler has a native backend, such as the X86 ISA,
the TAO can generate assembly code for the target processor.

• A C backend for the TAO will generate a source language program in C. The C backend will
adjust the code for the measured strengths and weaknesses of the native compiler.

• A query backend for the TAO will answer queries from the PAO. This backend will use a
generic ISA, with latencies and capacities established by measured system characteristics.

The TAO is invoked on a specific optimized RPU. One of its input parameters specifies which back-
end it should use in the current compilation step. Different paths through the PACE Compiler in-
voke the TAO. The compiler driver can invoke the TAO to produce either native assembly code,
using an LLVM backend, or tailored C source code. The PAO can invoke the TAO directly with the
query backend to obtain answers to specific queries (see § 9.3.4).

The TAO consults the optimization plan, stored in the application’s working directory, to guide
its actions. The specific actions taken by the TAO in a given invocation depend heavily on (1)
the choice of backend, specified by the tool that invokes it; (2) the context of prior optimization,
recorded from the AAP, the PAO, and prior compilations; and (3) results from the PACE RC tools.

Characterization The TAO uses measured characteristics, such as the number of allocable
registers and the relative cost of different abstractions, to shape the code in the C backend. The
compiler characterization work in Phase 2 will directly affect the choice of optimizations in the TAO

and the code shape produced by the C backend. In the query backend, it uses microarchitectural
characteristics, such as operation throughputs and latencies, to model the code’s performance.

3.4 Paths Through the PACE Compiler

The compiler driver can put together the components of the PACE Compiler in different ways. The
thick lines in Figure 3.2 show the three major paths that code takes through the PACE Compiler.

Full Compilation Path The compiler driver can invoke the tools in sequence, AAP, PAO, PAO→TAO

IR translator, TAO, native compiler. This path corresponds to the centerline of the figure. It

3.4. PATHS THROUGH THE PACE COMPILER 31

Application-Aware Platform-Aware Target-Aware

Partitioner Optimizer Optimizer

Dead code elimination1 Dead code elimination1

Inlining Inlining Superblock cloning
Outlining Outlining Tail call elimination

Procedure cloning SW branch prediction

Interprocedural constant prop. Local constant prop.
Intraprocedural constant prop. Intraprocedural constant prop.2

Partial redundancy elimination Partial redundancy elimination
Enhanced scalar replacement3 Enhanced scalar replacement3

Algebraic reassociation3 Algebraic reassociation3

Idiom recognition Algebraic simplification4

Synchronization reduction Operator strength reduction

If conversion Tree-height balancing
Scalar expansion Regeneration of SIMD loops5

Scalar replacement6

PDG-based code motion Lazy code motion

Polyhedral transformations Prefetch insertion
Loop transformations7 Loop unrolling

Array padding Array padding
Reorder structure nesting Reorder structure nesting

Array & loop linearization

1 Include multiple forms of “dead” code and multiple transformations.
2 May be redundant in the TAO.
3 Placement in PAO or TAO will depend on experimentation.
4 Includes application of algebraic identities, simplification of predicate expressions, and peephole optimization.
5 Generation of SIMD loops in C source form is tricky.
6 Expanded to include pointer-based values.
7 Will consider unroll, unswitch, fuse, distribute, permute, skew, align, reverse, tile, and shackling. Some combinations
obviate need for others. Some overlap with polyhedral transformations.

Figure 3.3: Optimizations Under Consideration for the PACE Compiler

invokes all of the tools in the PACE Compiler and directs the TAO to generate tailored C source
code as output.

Short Compilation Path If the target system has a strong native compiler, as determined by the RC

tools, the compiler driver may bypass the TAO, with the sequence AAP, PAO, native compiler.
(The compiler driver directs the PAO to emit C source code.) This sequence relies on the
native compiler for target-specific optimization.

LLVM Backend Path If an LLVM backend is available on the target machine, the compiler driver
can invoke a sequence that uses the LLVM backend to generate native code, bypassing the
native compiler. In this scenario, it invokes the tools in sequence AAP, PAO, PAO→TAO IR

translator, TAO. The compiler driver tells the TAO to use the LLVM backend.

In any of these paths, the PAO can invoke the TAO through the PAO–TAO query interface.

32 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

3.5 Optimization in the PACE Compiler

To avoid redundant effort, the PACE Compiler should avoid implementing and applying the same
optimization at multiple levels of abstraction, unless a clear technical rationale suggests otherwise.
Thus, the AAP, the PAO, and the TAO each have their own set of transformations; most of the trans-
formations occur in just one tool.

Figure 3.3 shows the set of optimizations that are currently under consideration for implemen-
tation in the PACE Compiler, along with a tentative division of those transformations among the
three distinct levels of optimization in the PACE Compiler. This division is driven by the specific
mission of each optimizer, by the level of abstraction at which that optimizer represents the appli-
cation code, and by the kinds of analysis performed at that level of optimization. We do not expect
to implement all of these transformations. Overlap between their effects will make some of them
redundant. Others may address effects that cannot be seen in the limited source-to-source context
of the PACE Compiler.

The canonical counterexample to this separation of concerns is dead code elimination—specif-
ically, elimination of useless code and elimination of unreachable code. Experience shows that
routine application of these transformations at various times and levels of abstractions both re-
duces compile times and simplifies the implementation of other optimizations. Thus, in the table,
they appear in both the PAO and the TAO. While we do not see an immediate rationale for applying
them in the AAP, we will test their efficacy in that setting, too.

Some optimizations require collaboration among the various tools in the PACE Compiler. Con-
sider, for example, vectorization. The PAO may identify a loop nest that is an appropriate candidate
for vectorization—that is, (1) the loop nest can execute correctly in parallel; (2) the loop executes
enough iterations to cover the overhead of vector startup; (3) the PACE RC tools have shown that
such a loop can run profitably in vector form; and (4) the configuration file contains the necessary
compiler options and commands to allow the PACE Compiler to generate code that will vectorize.
When the PAO finds such a loop, it must encode the loop in a form where the remainder of the tools
will actually produce vector code for the loop.

In the full compilation path, the PAO annotates the loop nest to indicate that it can run in vector
mode. The PAO→TAO IR translator encodes the SIMD operations into the LLVM IR’s vector opera-
tions. The TAO generates appropriate code, using either the C backend or the native backend. To
ensure that the TAO can generate vector code for these operations, the PAO may need to disable
specific TAO optimizations, such as software pipelining, block cloning, tree-height-balancing, and
loop unrolling. To do so, the PAO modifies the optimization plan seen by the TAO. Finally, the C

backend marks the vectorizable loops with appropriate annotations to inform the vendor compiler
that they should be vectorized (e.g., IVDEP).

In the LLVM backend path, optimization proceeds as above, except that responsibility for gener-
ating vector operations lies in the LLVM backend. Again, the PAO may disable some TAO optimiza-
tions to prevent the TAO from introducing unneeded dependences that prevent vector execution.

In the short compilation path, the PAO annotates the loop nest, as in the full compilation path.
In this case, however, the consumer of that annotation is the PAO pass that regenerates C code;
it will mark the loop nest with appropriate annotations for the vendor compiler, as found in the
system configuration file.

Appendix A provides more detail on our plans for handling vectorization in the PACE Compiler.

3.6. SOFTWARE BASE FOR THE PACE COMPILER 33

3.6 Software Base for the PACE Compiler

The PACE Compiler builds on existing open source infrastructure. The following table shows the
systems used in each of the components of the PACE Compiler.

Infrastructure Used in the PACE Compiler

AAP flex, bison, xerces
PAO EDG front end†, Rose, Candl, Pluto, CLooG
TAO LLVM

In the AAP, the open source systems are used to generate components of the AAP. In the PAO and
TAO, the actual PACE tools are build as extensions of the open source tools.

† Licensed software

34 CHAPTER 3. AN OVERVIEWOF THE PACE COMPILER

Chapter 4

PACE Application-Aware Partitioner

4.1 Introduction andMotivation

The Application Aware Partitioner (AAP) is the first tool that the PACE Compiler applies to an ap-
plication. The AAP rewrites the entire application into a set of refactored program units (RPUs) in
a way that may improve the ability of later stages of the compiler (the PAO, the TAO, and the native
compiler) to produce better code for the application. The specific goals for refactoring are:

1. To place related functions in the same RPU. Functions that call one another frequently are
placed in the same RPU because that frequent calling relationship should magnify any bene-
fits from interprocedural analysis and optimization.

2. To limit the size of translation units. Many optimizing compilers have the property that the
quality of optimization degrades with the size of the input file [26]. We limit the size of RPUs
both in terms of the number of functions (to limit the size of data structures in interprocedu-
ral analysis) and the number of total lines of code (to limit the size of intraprocedural data
structures). These limits should also mitigate nonlinear growth in compile time.

The RPUs are chosen by examining both the structure of the application code and execution profile
data for sample runs. Careful refactoring should lead to better global and interprocedural analysis
on the frequently executed portions of the code. That, in turn, should improve the application’s
performance.

4.2 Functionality

We describe the RPUs as a set of functions with the following properties:

1. connected call graph;

2. few calls between RPUs (as a percentage of total calls);

3. small enough number of functions that the compiler can do complex interprocedural analy-
sis.

4. All of the functions in an RPU exist in one translation unit, which is defined by the compiler.
This can be a single file or a number of files.

5. A function may be duplicated and placed in multiple RPUs to allow more specific and aggres-
sive optimizations. However, a need to minimize final code duplication needs to be studied.

Principal Contacts For This Chapter: Sebastien Donadio, dose@etinternational.com, Kirk Kelsy,
kelsey@etinternational.com, and Vivek Sarkar, vsarkar@rice.edu

35

36 CHAPTER 4. PACE APPLICATION-AWARE PARTITIONER

The functions in an RPU are ordered according to the original source file ordering. Each function
is associated with certain information, such as whether the function appears in other RPUs, and
whether the function needs to be accessible outside the RPU.

4.2.1 Input

The PACE compiler driver invokes the AAP with the appropriate input, which includes:

1. Source Code and Compiler Directives: We assume that the entire source of the application is
available, but not any library sources. The AAP consults the application’s optimization plan
to determine what optimizations and optimization parameters it should apply. It also uses a
build options file produced by the compiler driver (see § 4.7).

2. Profiling: The RTS profiler generates application profile information, including function call
counts and execution time (broken down per function). The profiler builds call trees, where
each path in a tree represents an executed sequence of function calls. Each edge in the tree
represents one function (the source) invoking another (the sink), and is associated with a
count. Profiling information will possibly be derived from multiple input data sets. In this
case the call trees (and their associated information) will be merged by the RTS.

3. Compiler Characteristics: Compiler characteristics produced by the resource characteriza-
tion module are used by AAP. For example, the maximum size of an RPU depends on the space
efficiency of the compiler’s internal representation and on how well the optimizer scales.

4.2.2 Output

The AAP produces as output, the following items:

1. Set of source files, each containing the functions that represent one RPU.

2. Makefile with compilation instructions for each RPU.

3. Graph representation of RPU partitioning (optionally).

It is worth noting that, beyond output item 3 above, the AAP does not explicitly provide any infor-
mation intended for the user. A programmer might find it useful to have a report of which functions
were moved or cloned and into which RPU they were placed; essentially a distillation of the graph
representation. The contents and organization are under consideration, but some of this infor-
mation can be inferred from the preprocessor directives indicating original source code location,
which the AAP preserves.

4.2.3 Out of Scope

The following functionality is currently out of scope for the PACE deliverables, but may be of interest
in the future:

• Incremental compilation and re-optimization in AAP.

4.3 Method

The AAP process consists of three primary stages:

1. Call tree processing

2. Partitioning

4.3. METHOD 37

xerces xml parser

HPC Profile

libgraph call tree code object locations

bison / flex

Source Code

graph partitioner

Source Restructurer

RPU Source Files

RPU definitionsC
o
m

p
ile

r
C

h
a
ra

ct
e
ri

za
ti

o
n

Figure 4.1: AAP Infrastructure

3. Source code reorganization

Figure 4.1 depicts these stages and data objects passed between them. During execution, the AAP

maintains all state in memory. Although the representation is concise, it is possible for the AAP to
exceed the available system memory during execution.

4.3.1 Call Tree Processing: Stage 1

The RTS produces profile results stored in an XML file (see § 10.2.3 and 10.3.2). The AAP locates
this file (in the application’s working directory) and parses it, using C language XML parsing library
xerces. Parsing extracts call trees and performance metrics associated with each path.

4.3.2 Partitioning: Stage 2

Partitioning seeks to group together those functions that are interdependent, while limiting the
size of each partitioned unit. The resulting partitions should also have limited dependence on one
another. The interdependence between functions is measured in terms of function calls. The size
limit of a partition depends on which transformations are specified in the optimization plan. For
example, if loop unrolling is performed, this causes an increase in the number of instructions in a
function. (Some functions are data cache limited and others are instruction cache limited.)

The partitioning framework receives a graph representation of the target application from Stage 1
in libgraph format. This graph is then divided into sub-graphs. The specific algorithm and heuris-
tics used to perform this partitioning are separate from the AAP framework itself, and is a subject of
further research.

As we gain experience with the PACE compiler, we may develop a partition heuristic that groups
together functions based on the similarity of their optimization plans. This approach might im-
prove the efficiency of subsequent optimization and compilation. We also plan to explore the use
of feedback from the PAO’s interprocedural analysis to the AAP. For example, the PAO might specify

38 CHAPTER 4. PACE APPLICATION-AWARE PARTITIONER

50

50

50

50

5

2

(main)

2

11

5 5 5 5

5 5 5

55

50

50

50

50

5

2

(main)

2

11

5 5 5 5

5 5 5

55

(a) Original call tree (b) Partitioned call tree

Figure 4.2: Example graph partitioning before and after the minimumweight edges are cut.

an affinity (to keep two functions together), a repulsion (to separate two functions), or a replication
(clone a procedure).

The current heuristic limits an RPU to less than 10 functions and cut edges with a small num-
ber of calls. The RPU size limit can be specified in terms of function count or lines of code. Each
resulting sub-graph then represents some set of functions, which are output as an RPU. The final
graph representation can be stored in a file using DOT representation, which can loaded by later
invocations to avoid recomputing the partitions.

Figure 4.2 illustrates a simple call tree, with nodes and edges representing functions and their
calls respectively. The numeric annotation in each node represents the number of invocations
made by its parent function.

4.3.3 Source Reorganization: Stage 3

The reorganization stage generates the final set of source files output by the AAP. For each RPU

description generated by Stage 2 the reorganizer must locate the indicated functions in the original
source code. In addition to the functions themselves, the AAP must identify ancillary code required
by each function such as type definitions, function declarations, and global data objects.

Source code reorganization is implemented with a parser built using the Bison parser generator
and Flex lexical analyzer. Prior to reorganization the C preprocessor is applied to each source file
to ensure that all necessary definitions are in place. The resulting file is then parsed to determine
the location (character position) of various elements, and the inter-dependencies between these
elements.

Refactoring the code can necessitate changes in the visibility of some functions. For example,
functions that were originally defined as static may be called, in the refactored code, from func-
tions in another RPU. To accommodate this kind of change, the AAP generates a wrapper function
for any static functions that it must expose outside of their new RPUs. Each such wrapper function
receives a unique name. Calls to the static function from another RPU are adjusted to use the ap-

4.4. RESULTS 39

propriate wrapper. If a function appears in multiple RPUs because the AAP has replicated it, the AAP

selects one instance as the primary implementation and marks all of the other clones as static to
prevent name conflicts. if the function is an entry point to the RPU (i.e., the caller of the function is
in a different RPU), then the function is given a wrapper with a unique name. When selecting the
primary implementation of a function, the AAP gives preference to a clone that serves as an entry
point to its RPU; doing so helps avoid some unnecessary name mangling.

4.4 Results

The application aware partitioner has been successfully applied to the SPEC CPU 2006 benchmark
suite. The impact of partitioning is tested by comparing execution time of these benchmarks when
compiled using a variety of RPU size constraints including the extreme cases of placing each func-
tion in a separate RPU as well as attempting to place all functions in a single RPU (i.e., infinite RPU

size). 1

These experiments have been performed using gcc 4.4. In addition to the execution time, we
compare the partitioned code size, and executable size resulting from each case. One may note
that the partitioned code size is often lower than the original code size, even when the RPU size is
small. This is a side-effect of the AAP importing only those declarations necessary for each RPU to
compile. The executable size is effected by the AAP’s creation of multiple copies of some functions
and creating wrapper functions to protect functions with static linkage.

4.4.1 SPEC Benchmarks

We tested the AAP using the SPEC CPU 2006 integer benchmarks. Figure 4.3 depicts the results of
four sets of source code:

• Base: unmodified code from SPEC benchmark

• RPU1: partitioned with a maximum of 1 function per RPU

• RPU10: partitioned with a maximum of 10 functions per RPU

• RPU∞: entire unpartitioned graph placed into a single RPU

4.5 Summary

We have developed an Application Aware Partitioner, which restructures source code into trans-
lation units more suitable for optimization during later compilation. The size of each translation
unit can be specified for each invocation of the AAP, based on the measured constraints of the na-
tive compiler, such as the growth of compile time as a function of RPU length, and the measured
resource constraints of the processor, such as instruction cache size. The AAP has been successfully
applied to the SPEC CPU 2006 benchmark suite, which exhibits a variety of code styles (e.g. a mix
of ANSI and K&R style). The impact of code partitioning depends on the subsequent compilation
process used, and the partitioning itself should be tailored to it. The results of the AAP component
will be more interesting once it is being used to produce RPUs for a specific purpose.

4.6 Command Line Options

4.6.1 Build Options File

Command line: -b, --build-file=<file-name>

Default: build-options.xml

1Only those functions identified by the profiling system are considered.

40 CHAPTER 4. PACE APPLICATION-AWARE PARTITIONER

Base RPU1 RPU10 RPU∞

perlbench

time 478.42 s 475.85 s 480.86 s 475.15 s
lines 375955 898110 679884 269921
binary size 1321 kB 3075 kB 2650 kB 1388 kB

bzip2

time 199.83 s 198.49 s 199.27 s 199.29 s
lines 17410 14359 12241 10813
binary size 84 kB 104 kB 99 kB 95 kB

gcc

time 111.83 s 111.49 s 110.88 s 111.57 s
lines 1134216 1049193 1017251 992294
binary size 3621 kB 3788 kB 3779 kB 3759 kB

mcf

time 1561.52 s 1931.35 s 1947.52 s 1822.21 s
lines 44722 11639 8931 7316
binary size 27 kB 60 kB 43 kB 31 kB

milc

time 1113.85 s 1134.43 s 1168.15 s 1129.69 s
lines 119607 70346 59320 45454
binary size 139 kB 453 kB 487 kB 299 kB

gobmk

time 375.09 s 387.86 s 389.32 s 393.54 s
lines 283671 642638 538406 248623
binary size 4076 kB 7878 kB 7208 kB 4467 kB

hmmer

time 923.91 s 931.73 s 923.55 s 925.10 s
lines 167000 145207 144833 144833
binary size 357 kB 357 kB 357 kB 357 kB

libquantum

time 1303.80 s 1299.48 s 1322.04 s 1325.82 s
lines 18090 16375 13835 8361
binary size 54 kB 85 kB 84 kB 76 kB

lbm

time 1282.16 s 1290.57 s 1282.95 s 1315.54 s
lines 3250 1961 1499 1224
binary size 26 kB 27 kB 26 kB 26 kB

Figure 4.3: SPEC CPU 2006 benchmark results

The build options file indicates what compiler command line options should be used for each
source file. These options are associated with each output RPU file, and used when pre-processing
the input files. The format for this file is specified in § 4.7.

4.6.2 Pruning

Command line: -c, --prune-threshold=< % >

Default: [no pruning]

Specifies a threshold for pruning graph nodes. The value represents a percentage of the total run-
ning time (as reported by the profile). Any call-tree leaves accounting for less than this portion of
run-time are pruned.

4.6.3 Function Limit

Command line: -f, --max-functions=#

Default: 10

4.6. COMMAND LINE OPTIONS 41

Specifies the maximum number of functions allowed in an output RPU.

4.6.4 Graphs

Optional command line: -g, --graphs | -G, --graphs-only

Default: [off]

Instruct the AAP to output a representation of the intermediate graphs (the call tree before and
after partitioning). The output files will be in DOT format in files named aap.dot and rpu.dot in the
output directory (§ 4.6.7). If graph pruning is enabled (see 4.6.2) then an addition aap.pruned.dot
is generated. The option -G additionally causes the AAP to terminate after partitioning the graph
(as a result no final.dot file is generated).

4.6.5 Line Limit

Command line: -l, --max-lines= #

Default: [unlimited]

Specifies the maximum lines of code allowed in an output RPU.

4.6.6 ProgramName

Command line: -n, --program-name=<name>

Default: a.out

Specifies the name to give the final compiled program in the generated Makefile.

4.6.7 Output Directory

Command line: -o, --output=<path>

Default: /tmp/rpus/

Indicate where all output files should be placed.

4.6.8 Partitioner Type

Command line: -p, --partitioner=<type>

Default: MinCut
Options: MinCut, Recombine

Indicates partitioning options. The min-cut partitioner repeatedly divides the graph by cutting the
minimum-weight (call count) edge. The recombine option invokes min-cut and then attempts to
fuse some undersized RPUs (a side-effect of the greedy min-cut algorithm).

4.6.9 Array Padding

The array padding transformation will rely on information from the PACE Resource Characteriza-
tion tools. Specifically, we are measuring access cost as a function of stride and will provide an
interface to the compiler that takes a given array size and returns the nearest sweet spot for stride
(above the size) and the expected decrease in access cost. RTS will provide some detailed informa-
tion on which arrays have the most misses.
Command line: --pad-arrays

Default: [off]

42 CHAPTER 4. PACE APPLICATION-AWARE PARTITIONER

When specified, activates array-padding analysis (see § 4.8).

4.6.10 RPU Graph

Command line: -r, --rpu-graph=<path>

Default: [off]

Specifies an RPU graph as input and implies that graph partitioning should not be done.

4.6.11 Verbose

Command line: -v, --verbose

Default: [off]

Generates extra status information during execution.

4.6.12 Profile

The final command line argument should be the path to the database of profile information pro-
duced by the RTS for this application. The AAP will use that profile information to drive the parti-
tioning algorithm.

4.7 Build Options File Format

The compiler driver, when it creates the working directory, should construct a build options file,
formatted in XML Each input source file should be indicated with a <file> node with an attribute
name <path>, the value of which should be the absolute path to said file. Each file node may op-
tionally contain children <option> nodes with attributes name and value.

<?xml version="1.0"?>

<buildoptions>

<file path="/path/to/file.c">

<option name="-g" value="" />

<option name="-O" value="3" />

</file>

</buildoptions>

In addition to the individual file nodes, the build options can contain a <globaloptions> node
containing some number of option nodes. These options apply to all source files.

4.8 Array Padding

The AAP is capable of detecting data arrays that can safely be padded for improved cache effects.
The array padding analysis excludes any array where:

• The array is passed as a function argument

• The address of the array is taken

• The array is used in a cast expression

• An unsafe expression is used as index into the array

We consider an expression to be safe for array indexing as long as it is:

• A constant

4.8. ARRAY PADDING 43

• A variable assigned a constant value

• Simple increment or decrement of such variable

• Mathematical addition or subtraction of the any of the above

The AAP only reports arrays that are global to the program (e.g., that are used across multiple
RPUs). Data arrays that are only used within a single RPU are explicitly made static by the AAP to
allow later PACE compiler stages to perform deeper, interprocedural analysis.

When array padding analysis is active, a report is generated as array-padding.xml in the out-
put directory (see § 4.6.9). The paddable arrays are reported as children of a <array-uses> node.
Each array is represented as an <array> node with a name attribute indicating the array name.
Each array node will have one <rpu> node with a name attribute matching the RPU name.

Array padding must be applied consistently across all RPUs that declare the array. To facilitate
partial compilation the array padding analysis reports the sets of RPUs that are mutually depen-
dent. The array padding output includes a <rpu-dependencies>node containing some number of
<rpu-group> nodes. Each rpu group is represented by some number of <rpu> nodes as described
above.

44 CHAPTER 4. PACE APPLICATION-AWARE PARTITIONER

Chapter 5

PACE Platform-Aware Optimizer

Overview

5.1 Introduction

Figure 1.2 provides a high-level overview of the PACE Compiler design. This chapter provides an
overview of the design for the Platform-Aware Optimizer (PAO). The PAO component performs
transformations and optimizations on a high-level, or near-source, representation of the code,
which we will refer to as a high-level intermediate representation (HIR). The HIR enables a com-
prehensive set of analyses and transformations on both code and data. Because the Rose system
serves as the primary infrastructure on which the PAO is build, the SAGE III IR from Rose serves as
the HIR for PAO. The motivation for having separate Platform-Aware and Target-Aware Optimizers
is to support both transformations that must be performed at the near-source level and transfor-
mations that might be better performed at a much lower level of abstraction.

5.2 Functionality

The PAO takes as input refactored program units (RPUs) generated by the Application-Aware Par-
titioner (AAP). It generates as output transformed versions of the RPU. The transformed versions
have been optimized for measured characteristics of the target platform, identified by the Resource
Characterization (RC) component, as well as by the configuration file for the target platform. Fig-
ure 5.1 illustrates the ways that PAO interacts with other parts of the system.

5.2.1 Input

The primary input for a single invocation of the PAO is C source code for an RPU, as generated by
the AAP. Additional inputs (as shown in Figure 5.1) include compiler directives from the compiler
driver, resource characteristics for the target platform, profile information with calling-context-
based profile information for the source application, and TAO cost analysis feedback (Path 3 in
Figure 5.2).

5.2.2 Output

As its output, the PAO produces a transformed HIR for the input RPU. The transformed code can be
translated into either C source code or into the IR used in the Target-Aware Optimizer (TAO). This
latter case uses the PAO→TAO IR translator, described in Chapter 8; the translator is also used to
translate from the SAGE III IR to the LLVM IR in the in the PAO–TAO query mechanism, as shown in
Figure 5.2.

Principal Contacts For This Chapter: Zoran Budimlić, zoran@rice.edu, and Vivek Sarkar, vsarkar@rice.edu

45

46 CHAPTER 5. PACE PLATFORM-AWARE OPTIMIZER OVERVIEW

Pla$orm-­‐Aware	
 Op/mizer	

(Polyhedral	
 and	
 AST-­‐based	

Transforma/ons)	

Resource	
 Characteris/cs	

Profile	
 Info	
 PAO	
 cost	
 query	

PAO-­‐TAO	

Translator	

PAO	
 IR	

Refactored	
 Program	
 Units	
 (RPUs)	

Cost	
 query	
 results	

Op/mized	

C	
 code	

Na/ve	

Compiler	
 TAO	

TAO	
 IR	

Op/mized	

C	
 code	

Figure 5.1: Platform-Aware Optimizer Interfaces

As described in § 3.3, the compiler driver invokes the PAO, passing the location of the working
directory. The PAO consults the optimization plan for the application, and can modify its own op-
timization plan to determine how it should process the RPU (see § 3.2.3). It can also modify the
optimization plan for the AAP across compilations to derive an RPU partitioning strategy that en-
ables optimizations in the PAO; and can modify the optimization plan for the TAO within a single
compilation, to instruct and constrain the TAO in its code transformations.

The two primary compilation paths through the PAO are shown as Path 1 and Path 2 in Fig-
ure 5.2.

Path 1 of of Figure 5.2 shows how the PAO implements it’s part of both the full compilation path
and the LLVM backend compilation path, as described in § 3.4. Along with optimized user code
in SAGE III IR, the PAO produces auxiliary IR information, including profiling, aliasing, and depen-
dence information. It may also amend the application’s optimization plan, which determines the
code transformations performed by the PAO and TAO for this RPU. Next, the compiler driver invokes
the PAO→TAO IR translator to convert the SAGE III IR into the LLVM IR used in the TAO. The trans-
lator associates the auxiliary information from the SAGE III IR with the new LLVM IR for the RPU.
Finally, the compiler driver invokes the TAO, which uses the LLVM IR, the auxiliary information as-
sociated with it, and the optimization plan; the TAO performs further optimization and produces
executable code for the RPU.

Path 2 of Figure 5.2, shows the flow of information when the PAO queries the TAO for cost esti-
mates to guide its high-level transformations. To perform a TAO query, the PAO constructs a syn-
thetic function for a specific code region. The synthetic function contains a transformed version of
the application’s original code for which the PAO needs a cost estimate. The PAO uses the PAO→TAO

IR translator to convert the synthetic function into LLVM IR and it invokes the TAO with a directive
to use the query backend. Note that, on this path, the PAO directly invokes both the PAO→TAO IR

5.3. METHOD 47

Compiler	

	
 Driver	

PAO	

ROSE	
 IR	
 	
 LLVM	
 IR	

Translator	

TAO	

2	

3	

1	

1	

1.  User	
 code	
 +	
 direcCves	

2.  Synthesized	
 code	
 +	
 queries	

3.  Query	
 replies	

User	
 code	

LLVM	
 IR	

data	

queries/direcCves	

control	

Code	
 characterisCcs	

Synthesized	
 code	

ROSE	
 IR	

User	
 code	

ROSE	
 IR	

Synthesized	
 code	

LLVM	
 IR	

ROSE	

LLVM	

Figure 5.2: Overview of PAO-TAO Interfaces

translator and the TAO, rather than relying on the compiler driver to invoke those tools.

During compilation, the PAO may determine that certain parameters might benefit from run-
time optimization. The PAO then prepares the inputs needed by the API for online feedback-directed
parameter selection presented by the RTS (see § 10.3.4). These inputs include a closure that con-
tains an initial parameter tuple, a specification of the bounds of the parameter tuple space, a gen-
erator function for exploring the parameter tuple space, and a parameterized version of the user’s
function to invoke with the closure containing the parameter tuple and other state.

5.3 Method

In this section, we include design details for the PAO component of the PACE compiler. These de-
tails follow from a basic design decision to use the Edison Design Group (EDG) front end for trans-
lating C source code, and the Rose transformation system with the SAGE III IR for performing high
level transformations.

After the SAGE III IR is created by the front end (§ 5.3.1), the passes described below in Sec-
tions 5.3.2 – 5.3.5 are repeated until no further transformation is performed (a fixed point is reached)
or until a predefined maximum number of iterations is reached. At that point, a transcription phase
produces either transformed C source code or LLVM IR bitcode (see § 5.3.6).

The PACE design enforces a strict separation of concerns among three aspects of performing
each transformation: 1) Legality analysis, 2) Cost analysis, and 3) IR update. This design makes
it possible to modify, replace, or consider multiple variants of any one aspect of a transformation
without affecting the others. As described in Chapters 6 and 7, there are two main modes of imple-
menting transformations in the PAO. Chapter 6 summarizes the use of a polyhedral transformation
framework that is capable of selecting a combination of transformations in a single unified step.

48 CHAPTER 5. PACE PLATFORM-AWARE OPTIMIZER OVERVIEW

Chapter 7 summarizes the classical transformations that the PAO can apply directly to the SAGE III

IR. These two modes complement each other since neither one subsumes the other.

5.3.1 Front end

The PAO relies on the EDG front end to parse the input C source code and to translate the program
to a SAGE III IR. The PACE Project will not modify the EDG front-end, so we can use pre-compiled
binaries of the EDG front-end for distribution.

5.3.2 Program Analyses

Before the PAO begins to explore a wide space of transformations to optimize the input program, it
needs to perform some canonical programanalyses to broaden the applicability of transformations
as much as possible. These analyses include:

• Global Value Numbering identifies equivalent values.

• Constant Propagation identifies compile-time constants.

• Induction Variable Analysis identifies induction variables; it builds the two prior analyses.

• Unreachable Code Elimination identifies code that has no feasible execution path—that is,
no path from procedure entry reaches the code.

• Dead Code Elimination identifies code that creates values that are never used.

The PAO includes an extensive framework for polyhedral analysis and transformation, described
in Chapter 6. That framework depends in critical ways on the fact that the code has already been
subjected to the canonical analyses outlined above. In many cases, a loop nest as expressed in the
input application may not a priori satisfy the constraints to be a Static Control Part (SCoP) in the
polyhedral framework (§ 6.2.1). Often, the canonical analyses transform such loop nests into a
form where they satisfy the constraints needed for application of the polyhedral techniques.

Even though the canonical analyses are all well understood, their implementation in the PAO

poses new research challenges for four reasons. First, the analyses in the PAO must handle both
array and pointer accesses whereas previous implementations have typically restricted their atten-
tion to scalar variables and their values. Second, the PAO must analyze code that is already in par-
allel form (OPENMP and MPI extensions to C) whereas prior work assumes sequential code. Third,
the PAO will attempt to combine these analyses to the fullest extent possible. Prior work has shown
that combining analyses can produce better results than computing them independently; again,
prior work has explored combined analysis of scalar variables and values. Finally, the PAO will
build analyses that can be incrementally updated after each transformation is performed, which
should significantly reduce the overall cost of the analyses.

The polyhedral framework also plays a role in the process of identifying, transforming, and ex-
pressing loops that can execute in vector form. The polyhedral framework identifies such loops
in a natural way. It computes data dependence information for the memory accesses in the loop
and its surrounding code and identifies consecutive memory accesses. This information, created
in the PAO’s polyhedral analysis framework, is passed to the TAO as annotations to the IR by the
PAO→TAO IR translator. The TAO uses the information to generate vector code. Appendix A pro-
vides a system-wide view of vectorization in the PACE Compiler.

5.3.3 Legality Analysis

A necessary precondition before a compiler can perform a code transformation is to check the le-
gality of the transformation. Legality conditions for a number of well-known transformations have

5.3. METHOD 49

been summarized in past work e.g., [3, 62]. We summarize below the legality conditions for many
of the transformations that will be performed by the PAO. While much of the research literature
focuses on the data dependence tests for legality, it is also necessary to check control dependence
and loop bound conditions to ensure correctness of loop transformations. The following list sum-
marizes the legality conditions for the transformations described in this chapter.

• Loop interchange: no resulting negative dependence vector, counted loop with no prema-
ture exit, loop-invariant or linear loop bounds with constant stride (or loop invariant-loop
bounds with loop-invariant stride for loops being interchanged)

• Loop tiling: same conditions as loop interchange for all loops being permuted

• Unroll-and-jam: same data dependence conditions as loop tiling, but loop bounds must be
invariant

• Loop reversal: no resulting negative dependence vector, counted loop with no premature
exit, arbitrary loop bounds and stride

• Unimodular loop transformation (includes loop skewing): counted loop with no premature
exit, no loop-carried control dependence, loop-invariant or linear loop bounds with constant
stride

• Loop parallelization: no resulting negative dependence vector, counted loop with no prema-
ture exit, arbitrary loop bounds and stride

• Loop distribution: no control + data dependence cycle among statements being distributed
into separate loops

• Loop fusion: no loop-independent dependence that prevents code motion to make fused
loops adjacent, and no loop-carried fusion-preventing dependence

• Scalar replacement: no interfering aliased locations

• Constant replacement: variable must have propagated constant value on all paths

• Scalar renaming, scalar expansion, scalar privatization: no true dependences across renamed
locations

• Unreachable code elimination: no feasible control path to code

• Useless (dead) code elimination: no uses of defs being eliminated

• Polyhedral transformation: input loop nest must form a “Static Control Part” (SCoP); see
§ 6.2.1 for more details

5.3.4 Cost Analysis: Memory Hierarchy

The other precondition that the compiler must satisfy before it performs some code transformation
is to check the profitability of that transformation via cost analysis. Cost analysis will play a more
central role in the PACE Compiler than in many earlier compilers, because the compiler has better
knowledge of the performance characteristics of the target machine, as measured by the RC tools.
One particular challenge is to perform effective and accurate memory cost analysis on an HIR such
as the SAGE III IR.

Consider the lowest (level 1) levels of a cache and TLB. The job of memory cost analysis is to
estimate the number of distinct cache lines and distinct pages accessed by a (hypothetical) tile

50 CHAPTER 5. PACE PLATFORM-AWARE OPTIMIZER OVERVIEW

of t1 × . . .× th iterations, which we define as DLtotal(t1 , . . . , th) and DPtotal(t1 , . . . , th), respec-
tively. Assume that the tile sizes are chosen so that DLtotal and DPtotal are small enough so that no
collision and capacity misses occur within a tile i.e., DLtotal(t1 , . . . , th) ≤ effective cache size and
DPtotal(t1 , . . . , th) ≤ effective TLB size.

An upper bound on the memory cost can then estimated be as follows:

COSTtotal = (cache miss penalty)×DLtotal + (TLB miss penalty)×DPtotal

Our objective is to minimize the memory cost per iteration, COSTtotal/(t1 × . . .× th). This ap-
proach can be extended to multiple levels of the memory hierarchy.

An upper bound on the memory cost typically leads to selection of tile sizes that may be conser-
vatively smaller than empirically observed optimal values. Therefore, we will also pursue a lower
bound estimation of memory costs in the PACE project, based on the idea of establishing a lower
bound ML, the minimum cache size needed to achieve any intra-tile reuse. In contrast to DL, the
use of ML leads to tile sizes that may be larger than empirically observed optimal values. The avail-
ability of both bounds provides a limited space for empirical search and auto-tuning as opposed to
a brute-force exhaustive search over all possible tile sizes.

5.3.5 Cost Analysis: PAO-TAOQuery Interface

The HIR used in the PAO simplifies both high-level transformations and analysis of costs in the
memory hierarchy. There are, however, other costs in execution that can only be understood at a
lower level of abstraction. Examples include register pressure (in terms of both MAXLIVE and spill-
cost, see § 9.3.4), instruction-level parallelism, simdization, critical-path length, and instruction-
cache pressure. To address these costs, the PACE Compiler includes a PAO-TAO query mechanism
that lets the TAO estimate various costs on specific code fragments. The PAO passes the particular
cost estimates it needs to the TAO through a query data structure. The PAO uses the results of such
queries to guide the selection of various parameters for the high-level transformations.

To perform a query, the PAO creates a synthetic function that encapsulates the transformed
code from the region of interest and passes it, along with auxiliary information and a query, to the
TAO.

The auxiliary information includes information on aliases, data structure alignment, and run-
time profile information from the RTS. It passes this information to the TAO, along with a directive to
use the query backend rather than a code-generating backend. For simplicity, each query includes
a single synthetic function. If the PAO needs to submit multiple queries, they can be submitted
separately as a sequence of independent single queries.

For each query, the query backend of the TAO (invoked in-core1 with PAO) uses the optimized
low-level code and values from the RC tools to produce cost estimates for the synthetic function.
The TAO records its estimates in the query data structure and passes it back (Path 3 on Figure 5.2)
to the PAO.

We will evaluate the following three approaches for the synthetic function generation in the
PAO:

1. Cloning only of the user code region of interest as a separate function. This will require local
variables from surrounding context to be passed as reference parameters. The advantage of
this approach is that there will be minimal code duplication, the disadvantage is that it will
lead to a less precise analysis of cost results due to the absence of the exact context for local
variables.

1The TAO shares a process and an address space with the PAO to facilitate TAO access to PAO generated annotations and
data structures. This arrangement should reduce the cost of making a PAO–TAO query.

5.3. METHOD 51

2. Cloning of the user code region of interest along with its control and data slice from the func-
tion. This will include full intraprocedural context for the slice of the code region. This ap-
proach would produce more precise query results, but there will be some pollution of cost
information by other code regions in function due to conservative slicing.

3. Cloning of the entire function containing the specific user code region. This will include
full intraprocedural context for the code region. This approach would yield the most precise
query results, but there still will be some pollution of cost information by other code regions
in the function.

We anticipate that the second approach will yield the best cost results, but the matter needs
further study and evaluation. Open questions, such as how well the synthetic function captures
effects from code that surrounds the synthetic function, complicate the situation. For example,
the presence of values that are live across the code captured in the synthetic function but are not
present in that region can introduce inaccuracy in the results. Ignoring these values will pollute the
cost estimation, while isolating them, via some technique such as live-range splitting around the
region, may alter the final code.

The PAO interprets query results and chooses transformation parameters based on TAO feed-
back, for example choosing unroll factors for each loop in a multidimensional loop nest.

5.3.6 Transcription

When the PAO has finalized its selection of transformations, the SAGE III IR is updated to finalize all
transformations. At that point, a transcription phase uses the SAGE III IR to either generate source
code or LLVM IR. The compiler driver then uses the PAO→TAO IR translator to generate LLVM bit-
code as input input to the Target-Aware Optimizer (TAO).

5.3.7 The Optimization Plan

The PAO uses the application’s optimization plan both to obtain guidance in its own operation and
to affect the processing of code in other parts of the PACE Compiler. The initial optimization plan
is generated by the compiler driver (see § 3.2.3). It may be modified by other components of the
PACE system, including the PACE Machine Learning tools.

The PAO will modify the optimization plan for an application to guide the application of trans-
formations in both the AAP and the TAO. It modifies the AAP optimization plan across compilations,
and the TAO optimization plan within a compilation. For example, if analysis in the PAO and the
PAO–TAO query interface shows that some loop nest has unsupportable demand for registers and
that the loop nest was produced by inline substitution in the AAP, the PAO may direct the AAP to
avoid inlining in that function or that RPU. Similarly, on a loop that the PAO identifies as vectoriz-
able, the PAO may direct the TAO not to apply transformations, such as tree-height balancing, that
might change the code structure and prevent vector execution.

5.3.8 PAO Parameters for Runtime System

The PAO might determine that certain parameters can most likely benefit from runtime optimiza-
tion. The PAO will present the RTS with a closure that contains an initial parameter tuple, a spec-
ification of the bounds of the parameter tuple space, a generator function for exploring the pa-
rameter tuple space, and a parameterized version of the user’s function to invoke with the closure
containing the parameter tuple and other state. Additional detail about the RTS interface for online
feedback-directed parameter selection can be found elsewhere (§10.3.4).

To illustrate how the PAO will exploit RTS support for online feedback-directed parameter selec-
tion, consider the problem of Parametric Tiling described in § 6.3.6. Here, the PAO recognizes the

52 CHAPTER 5. PACE PLATFORM-AWARE OPTIMIZER OVERVIEW

need to block the code to improve performance in the memory hierarchy, but it cannot determine
the optimal tile size at compile time. In this case, the PAO will prepare the loop nest for runtime
tuning by constructing the inputs for the RTS online feedback-directed parameter selection API and
rewriting the code to use that facility.

5.3.9 Guidance from Runtime System

If the application has already been profiled, the RTS will provide the PAO with high-level quanti-
tative and qualitative guidance about runtime behavior. This information may include data on
resource consumption, on execution time costs, and on specific inefficiencies in the code (see
§ 10.2.3). The PAO will use this information to determine where to focus its efforts and how to
alter the optimization plan to improve overall optimization effectiveness.

Chapter 6

The Polyhedral Framework

The Polyhedral Optimization (PolyOpt) subsystem of PAO (Platform Aware Optimizer)
is being developed to perform transformations such as fusion, distribution, interchange,
skewing, shifting, tiling, etc. on affine loop nests. The polyhedral transformation ap-
proach is based on the Pluto system that has shown good promise for transformation
of a number of affine computational kernels. PolyOpt is being implemented as a Sage
AST to Sage AST transformer integrated with Rose.

6.1 Introduction

The Polyhedral Optimization (PolyOpt) subsystem of PACE is a component of the PAO (Platform
Aware Optimizer). It will enable loop transformations such as fusion, distribution, interchange,
skewing, shifting, tiling, etc. to be applied to affine loop nests in a program optimized by PACE.
PolyOpt is integrated with Rose. It takes as input the Sage AST representation for the refactored
partitioning units (RPU, Sec. 4.2) to be optimized by PolyOpt, identifies subtrees of the AST that
represent affine computations, transforms those AST subtrees to a polyhedral representation, per-
forms loop transformations using the polyhedral representation, and finally converts the polyhe-
dral representation back to Sage AST. The Sage AST transformations performed by PolyOpt will
be preceded and followed by other (non-polyhedral) transformations described in Chapter 7. The
polyhedral transformation approach is based on the Pluto system [13, 14] that has shown great
promise for transformation of a number of affine computational kernels.

6.1.1 Motivation

The polyhedral model [34] provides a powerful abstraction to reason about transformations on col-
lections of loop nests by viewing a dynamic instance (iteration) of each assignment statement as
an integer point in a well-defined space called the statement’s polyhedron. With such a represen-
tation for each assignment statement and a precise characterization of inter- and intra-statement
dependences, it is possible to reason about the correctness of complex loop transformations. With
the conventional abstractions for data dependences used in most optimizing compilers (including
gcc and vendor compilers), it is extremely difficult to perform integrated model-driven optimiza-
tion using key loop transformations such as permutation, skewing, tiling, unrolling, and fusion
across multiple loop nests. One major challenge with AST-based loop transformation systems is
the case of imperfectly nested loops; this is seamlessly handled in a polyhedral compiler transfor-
mation framework.

Principal Contacts For This Chapter: Atanas Rountev, rountev@cse.ohio-state.edu, and P. Sadayappan,
saday@cse.ohio-state.edu

53

54 CHAPTER 6. THE POLYHEDRAL FRAMEWORK

6.1.2 Background

The input to a transformation system based on the polyhedral model is a region of code containing
a sequence of loop nests. Variables that are invariant in the region (e.g., array sizes) are referred to
as parameters. The main constraints imposed on the region of code are as follows (see § 6.2.1 for
a complete list of constraints). Loop bounds are affine functions (i.e., c1i1 + . . . + cnin + cn+1; ck
are compile-time constants) of loop iteration variables and parameters; this includes imperfectly
nested and non-rectangular loops. Array index expressions are also affine functions of iteration
variables and parameters. Such program regions are typically the most computation-intensive
components of scientific and engineering applications, and they appear often in important real-
world code [10].

A statement s surrounded by m loops is represented by an m-dimensional polyhedron1 re-
ferred to as an iteration space polyhedron. The coordinates of a point in this polyhedron (referred
to as an iteration vector) correspond to the values of the loop indices of the surrounding loops. The
polyhedron can be defined by a system of affine inequalities derived from the bounds of the loops
surrounding s; each point in the polyhedron corresponds to a run-time instance of s.

A significant advantage of using a polyhedral abstraction of statements and dependences is that
compositions of loop transformations have a uniform algebraic representation that facilitates inte-
grated global optimization of multi-statement programs. In particular, it is possible to represent
arbitrary compositions of loop transformations in a compact and uniform manner, and to reason
about their cumulative effects through well-defined algebraic cost functions. In contrast, with the
traditional model of data dependence that is used in most optimizing compilers, it is very difficult
to model the effect of a sequence of loop transformations. Previous work using unimodular trans-
formations and iteration-reordering transformations (see for instance [7, 70, 63]) were limited to
modeling the effect of sequences of iteration-reordering transformations. However, they could not
accommodate transformations that changed a loop body such as distribution and fusion, or trans-
formations on imperfect loop nests.

Further, global optimization across multiple statements is not easily accomplished (e.g., trans-
formation of imperfectly nested loops is a challenge). Phase ordering effects as well as rigid and
less powerful optimization strategies are all factors that make syntax-based transformations of loop
nests less powerful than polyhedral-based ones for optimizing affine loop nests [36].

6.2 Functionality

The polyhedral transformation framework in PACE takes as input the Sage ASTs for all functions in
an input RPU. In each AST, it identifies code fragments (i.e., AST subtrees) that can be targets of
polyhedral optimizations. Each such fragment is referred to as a Static Control Part (SCoP). Each
SCoP is analyzed and transformed; the result is a new subtree which is then inserted in the place of
the original subtree in the function’s AST.

6.2.1 Static Control Part (SCoP) Code Fragments

A SCoP is an AST subtree with a particular structure which allows powerful polyhedral analyses and
optimizations. A conceptual grammar for a SCoP can be defined as follows2

1A hyperplane is an n − 1 dimensional affine subspace of an n-dimensional space. A half-space consists of all points of
an n-dimensional space that lie on one side of a hyperplane (including the hyperplane); it can be represented by an affine
inequality. A polyhedron is the intersection of finitely many half-spaces.
2This is an abstract description of the structure of the code; an actual SCoP will, of course, respect the grammar of the C

language

6.2. FUNCTIONALITY 55

〈SCoP〉 ::= 〈ElementList〉
〈ElementList〉 ::= 〈Element〉 | 〈Element〉 〈ElementList〉
〈Element〉 ::= 〈Statement〉 | 〈Loop〉 | 〈If 〉
〈Loop〉 ::= for 〈IteratorVariable〉 =

〈LowerBound〉 , 〈UpperBound〉 { 〈ElementList〉 }
〈If 〉 ::= if 〈Expression〉 comp op 〈Expression〉

{ 〈ElementList〉 } else { 〈ElementList〉 }

Expressions and statements Each loop bound must be an affine expression c1i1 + . . . + cnin +

cn+1 where ck are compile-time constants. The two expressions compared in operator comp op

in an if-statement must also be affine. Inside an statement, each index expression ek in an array
access expression a[e1] . . . [ed] (where a is a d-dimensional array) must be an affine expression.3

For every statement, each expression which denotes a memory location must be a scalar vari-
able x or an array access expression a[e1] . . . [ed]. No pointer dereferences *p or accesses to struc-
ture fields s.f or p->f are supported Conservatively, function calls are also disallowed in a state-
ment. It may be possible to relax this last constraint by allowing calls to side-effect-free functions,
assuming that such function names are provided by external sources.

Iterators, parameters, and affine expressions All scalar variables that appear anywhere in the
SCoP can be classified into three disjoint categories:

• Loop iterators; there must not be any reference to a loop iterator which is a write, beside the
for loop increment

• Parameters: not iterators; there must not be any reference to a parameter which is a write

• Modified variables: all variables referenced in the scop that are not loop iterators nor param-
eters

Expressions in loop bounds, if-statements, and array access expressions must be affine in SCoP
parameters and in iterators of surrounding SCoP loops. Checking that an expression is of the form
c1i1 + . . .+ cnin + cn+1 (where ck are compile-time constants) is not enough; variables ik need to
be SCoP parameters or iterators of surrounding SCoP loops.

6.2.2 SCoP Detection and Extraction of Polyhedra

A high-level diagram of framework components and their interactions is shown in Figure 6.1. The
first component, described in this subsection, takes as input the Sage ASTs for all functions in the in-
put RPU. Each function-level AST is analyzed to identify subtrees that satisfy the definition of SCoP
described above. In addition to the subtree, the SCoP detection also identifies SCoP parameters
and iterators. Once a proper subtree is identified, it is traversed to extract its polyhedral representa-
tion. This representation contains a set of statements (each one corresponding to 〈Statement〉 from
the conceptual grammar), a set of parameter names, and a set of array names. This representation
is the output of the SCoP Detection / Extraction stage.

In the polyhedral representation of a SCoP, each statement is associated with a set of iterator
names, a matrix encoding the polyhedron that is the statement’s iteration space, a matrix repre-
senting the array elements that are read by the statement, and a matrix representing the array ele-
ments that are written by the statement. Scalar variables are treated as a special type of array with
a single element.

3The PACE implementation should be able to handle general affine expressions in C code — e.g., 3*i - i*13 + (-5)*j

+ (-(-4)). In all such expressions, variables and constants must be of C integer types [17, §6.2.5].

56 CHAPTER 6. THE POLYHEDRAL FRAMEWORK

Sage AST for
a C function

SCoP Detection
and Extraction

Candl
Dependence

Analyzer

Polyhedral SCoP
representation

Pluto
Transformation

Generator

SCoP + polyhedral
dependence graph

CLooG
Code

Generator

SCoP +
transformations

Parametric
Tiling

CLAST AST for
transformed SCoP

CLAST AST
for tiled SCoP

Sage AST
Generation

Modified
Sage AST

Figure 6.1: Overview of the polyhedral transformation framework.

6.2.3 Polyhedral Dependence Analysis with Candl

A central concept of program optimization is to preserve the semantics of the original program
through the optimization steps. Obviously, not all transformations, and hence not all affine sched-
ules (i.e., orderings of statement instances), preserve the semantics for all programs. To compute
a legal transformation, we resort to first extracting the data dependences expressed in a polyhedral
representation. This information is later used to constrain the schedules to ensure that they re-
spect the computed dependences. The polyhedral dependence analysis stage takes as an input the
polyhedral representation of a SCoP, and extends its content with data dependence information.

Candl, the Chunky ANalyzer for Dependences in Loops, is an open-souce tool for data depen-
dence analysis of static control parts [18]. To capture all program dependences, Candl builds a
set of dependence polyhedra, one for each pair of array references accessing the same array cell
(scalars being a particular case of array), thus possibly building several dependence polyhedra per
pair of statements. A point in a dependence polyhedron encodes a pair of iteration vectors for
which the dependence may be occur. Given the polyhedral representation of the input RPU, Candl
outputs the polyhedral dependence graph. It is a multi-graph with one node per statement, and an
edge eR→S labeled with a dependence polyhedronDR,S , for each dependence.

6.2.4 Pluto Transformation Generator

The polyhedral representation allows the expression of arbitrarily complex sequences of loop trans-
formations. The downside of this expressiveness is the difficulty of selecting an efficient optimiza-
tion that includes tiling together with fusion, distribution, interchange, skewing, permutation and
shifting [36, 56]. The Pluto transformation stage takes as an input the polyhedral representation
enriched with dependence information, and outputs a modified polyhedral representation where
the original statement schedules have been replaced by those computed by Pluto.

Pluto is an automatic transformation open-source tool that operates on the polyhedral repre-
sentation [55]. It outputs schedules (combinations of transformations) to be later applied by the

6.3. METHOD 57

code generator. Pluto performs transformations for coarse-grained parallelism and locality simul-
taneously. The core transformation framework mainly works by finding affine transformations
for efficient tiling and fusion, but is not limited to it. OPENMP-like parallel code for multicores
can be automatically generated from sequential code. Outer, inner, or pipelined parallelization
is achieved, besides register tiling and exposing inner parallel loops for subsequent vectorization
(see A for details about code vectorization).

6.2.5 Polyhedral Code Generation with CLooG

Code generation is the final step of polyhedral optimization. This stage takes as an input the poly-
hedral representation of SCoP enriched with the schedules computed by Pluto, and outputs a code
fragment in CLooG’s internal syntactic representation, CLAST. The open-source CLooG code gen-
erator [8, 21] applies the transformations specified by the affine schedules, and generates a CLAST
abstract syntax tree corresponding to the transformed code.

6.2.6 Parametric Tiling

Tiling is a crucial transformation for achieving high performance, especially with deep multi-level
memory hierarchies. The tiling phase will take place inside the code generation stage, that is, it
will take as an input a polyhedral representation of a SCoP enriched with the schedules computed
by Pluto, and output a CLAST tree being the result of the transformations embodied in the sched-
ules combined with tiling. Tiling is a well known technique for improving data locality and regis-
ter reuse. It has received a lot of attention in the compiler community. However, the majority of
work only addresses the tiling of perfectly nested loops. The few systems that can automatically
generate tiled code for imperfectly nested loops require that tile sizes be compile-time constants.
The PolyOpt system will incorporate parametric tiling capability, where tile sizes do not have to be
compile-time constants. Parametric tiled code will be passed by the PAO to the RTS (as discussed
in Sec. 5.3.8) to determine the best tile sizes for the target platform.

6.2.7 Translation to Sage ASTs

The final stage of PolyOpt consists in translating the CLAST representation into a Sage AST, and
reinserting this Sage AST in the RPU in place of the original Sage subtree for the SCoP. The result
of the code generation in CLooG is represented using the CLooG IR, which provides enough infor-
mation to generate an equivalent Sage AST subtree. The resulting modified Sage AST is indistin-
guishable from the “normal” ASTs generated by Rose’s front end, and can be used as input to other
components of the PAO system.

6.3 Method

6.3.1 SCoP Detection and Extraction of Polyhedra

Given a Sage AST, a bottom-up traversal is used to identify AST subtrees that correspond to SCoPs.
Since SCoPs cannot be nested, as soon as a node breaks the SCoP definition then none of its ances-
tor can be in a SCoP. During the traversal, when several sibling subtrees satisfy the SCoP definition,
an attempt is made to create a larger SCoP encompassing these subtrees. At the end of this process,
there may be several disjoint SCoP detected. Each one is independently subjected to the process-
ing steps described in this section.

For each top-level element of the SCoP, a bottom-up traversal is performed for the Sage AST

rooted at that node. During the traversal, information about upper/lower loop bounds is collected
(represented as vectors that encode the affine constraints). Similarly, vectors encoding the read-
/write accesses of array elements are constructed. When all children of a node have been traversed,

58 CHAPTER 6. THE POLYHEDRAL FRAMEWORK

their data is combined as necessary, based on the context of the node. When the root node of the
subtree is reached, all necessary information for each statement appearing in the subtree has been
collected.

6.3.2 Polyhedral Dependence Analysis with Candl

Data dependence representation Two executed statement instances are in a dependence rela-
tion if they access the same memory cell and at least one of these accesses is a write operation. For
a program transformation to be correct, it is necessary to preserve the original execution order of
such statement instances and thus to know precisely the instance pairs in the dependence relation.
In the algebraic program representation described earlier, it is possible to characterize exactly the
set of instances in dependence relation in a synthetic way.

Three conditions have to be satisfied to state that an instance ~xR of a statement R depends
on an instance ~xS of a statement S. (1) They must refer to the same memory cell, which can be
expressed by equating the subscript functions of a pair of references to the same array. (2) They
must be actually executed, i.e. ~xS and ~xR have to belong to their corresponding iteration domains.
(3) ~xS is executed before ~xR in the original program.

Each of these three conditions may be expressed using affine inequalities. As a result, exact sets
of instances in dependence relation can be represented using affine inequality systems. The exact
matrix construction of the affine constraints of the dependence polyhedron used in PolyOpt was
formalized by Bastoul and Feautrier [9, 11].

for (i = 0; i <= n; i++) {

s[i] = 0; // statement R

for (j = 0; j <= n; j++)

s[i] = s[i] + a[i][j] * x[j]; // statement S

}

Figure 6.2: matvect kernel

For instance, if we consider the matvect kernel in Figure 6.2, dependence analysis gives two
dependence relations: δR,S for instances of statement S depending on instances of statement R
(e.g.,R produces values used by S), and similarly, δS,S .

For Figure 6.2, dependence relation δR,S does not mean that all instances of R and S are in
dependence—that is, the dependence does not necessarily occur for all possible pairs of ~xR and
~xS . Let ~xR = (iR) and ~xS = (iS , jS). There is a dependence from R to S only when iR = iS . We
can then define a dependence polyhedron, being a subset of the Cartesian product of the iteration
domains, containing all values of iR, iS and jS for which the dependence exists. We can write this
polyhedron in matrix representation: the first line represents the equality iR = iS , the next two
encode the constraint that vector (iR) must belong to the iteration domain of R and similarly, the
last four state that vector (iS , jS) belongs to the iteration domain of S:

DR,S :



1 −1 0 0 0

1 0 0 0 0

−1 0 0 1 0

0 1 0 0 0

0 −1 0 1 0

0 0 1 0 0

0 0 −1 1 0


.


iR
iS
jS
n

1


= 0

≥ ~0

To capture all program dependences we build a set of dependence polyhedra, one for each pair

6.3. METHOD 59

of array references accessing the same array cell (scalars being a particular case of array), thus pos-
sibly building several dependence polyhedra per pair of statements. The polyhedral dependence
graph is a multi-graph with one node per statement. An edge eR→S is labeled with a dependence
polyhedronDR,S , for all dependence polyhedra.

A dependence polyhedron is the most refined granularity to represent a dependence. However,
for the cases where this precision is not needed it is easy to rebuild a more abstract and less detailed
dependence information from the polyhedral dependence graph. For instance, one can generate
a simple graph of dependent memory references, or rebuild the dependence distance vectors by
extracting some properties of the dependence polyhedra.

Dependence analysis inCandl The Candl software was written by Bastoul and Pouchet. It imple-
ments the construction of the complete polyhedral dependence graph of a given static control part.
The algorithm to compute all polyhedral dependences simply constructs the dependence polyhe-
dron for each pairs of references to the same array, for all program statements. The polyhedron is
then checked for emptiness. If it is empty then there is no dependence between the two considered
references. Otherwise there is a (possibly self) dependence between the two references.

6.3.3 Pluto Transformation Generator

The tiling hyperplane method [13, 14] is a model-driven technique that seeks to optimize a SCoP
through transformations encompassing complex compositions of multi-dimensional tiling, fusion,
skewing, interchange, shifting, and peeling.

Representing optimizations A transformation in the polyhedral framework captures in a single
step what may typically correspond to a sequence of numerous textbook loop transformations [36].
It takes the form of a carefully crafted affine multidimensional schedule, together with iteration
domain and/or array subscript transformations.

In the tiling hyperplane method, a given loop nest optimization is defined by a multidimen-
sional affine schedule. Given a statement S, we use an affine form on the surrounding loop itera-
tors ~xS . It can be written as

ΦS(~xS) = CS

(
~xS
1

)
where CS is a matrix of non-negative integer constants. The instance of S defined by iteration
vector ~xS is scheduled at multidimensional date ΦS(~xS). Multidimensional dates can be seen as
logical clocks: the first dimension corresponds to days (most significant), next one is hours (less
significant), the third to minutes, and so on. Note that every static control program has a mul-
tidimensional affine schedule [34], and that any loop transformation can be represented in the
polyhedral representation [70].

Let φSi be the ith row of CS . A row is an affine hyperplane on the iteration domain of S. For S
withmS surrounding loop iterators, let

φSi = [cS1 c
S
2 . . . cSmS

cS0]

Here cSi are integer constants; cS0 is the coefficient attached to the scalar dimension.

The tiling hyperplanemethod Intuitively, the tiling hyperplane method computes an affine mul-
tidimensional schedule [34] for the SCoP such that parallel loops are at the outer levels, and loops
with dependences are pushed inside [13, 14], and at the same time, maximizing the number of di-
mensions that can be tiled. The method proceeds by computing the schedule level by level, from
the outermost to the innermost. Specifically, affine hyperplanes with special properties are com-
puted, one for each row of the scheduling matrix. Such specific hyperplanes are called tiling hy-
perplanes.

60 CHAPTER 6. THE POLYHEDRAL FRAMEWORK

Computing valid tiling hyperplanes Let S = {S1, S2, . . . , Sn} be the set of statements of the
SCoP. LetG = (V,E) be the data dependence graph for the original SCoP.G is a multi-graph with
V = S andE being the set of data dependence edges. Notation eSi→Sj ∈ E denotes an edge from
Si to Sj , but we will often drop the superscript on e for readability. For every edge e ∈ E from Si to
Sj ,DSi,Sj is the corresponding dependence polyhedron.

Tiling along a set of dimensions is legal if it is legal to proceed in fixed block sizes along those
dimensions. This requires dependences to not be backward along those dimensions [41, 58, 13].
{φS1 , φS2 , . . . , φSk

} is a legal (statement-wise) tiling hyperplane if and only if the following holds
true for each dependence edge eSi→Sj ∈ E:

φSj

(
~xSj

)
− φSi

(~xSi
) ≥ 0,

〈
~xSi

, ~xSj

〉
∈ DSi,Sj

(6.1)

Cost model for computing the tiling hyperplanes There are infinitely many hyperplanes that
may satisfy the above criterion. An approach that has proved to be simple, practical, and powerful
has been to find those directions that have the shortest dependence components along them [13].
For polyhedral code, the distance between dependent iterations can always be bounded by an
affine function of the SCoP parameters (represented as a p-dimensional vector ~n).

∀
〈
~xSi

, ~xSj

〉
∈ DSi,Sj

,

δe
(
~xSi

, ~xSj

)
= φSj

(
~xSj

)
− φSi

(~xSi
)

∀ 〈~xSi , ~xSj 〉 ∈ DSi,Sj ,∀e ∈ E, ~u ∈ Np, w ∈ N,
u.~n+ w − δe

(
~xSi

, ~xSj

)
≥ 0 (6.2)

The legality and bounding function constraints from (6.1) and (6.2) respectively are cast into a for-
mulation involving only the coefficients of φ’s and those of the bounding function by application of
the Farkas Lemma [34]. Coordinates of the bounding function are then used as the minimization
objective to obtain the unknown φ’s coefficients.

minimize≺ (u, w, . . . , ci, . . .) (6.3)

This cost function is geared towards maximal fusion. This allows to minimize communica-
tion and maximize locality on the given set of statements. The resulting transformation is a com-
plex composition of multidimensional loop fusion, distribution, interchange, skewing, shifting and
peeling. Finally, multidimensional tiling can be applied on all permutable bands.

Enabling vectorization Due to the nature of the optimization algorithm, even within a local tile
(L1) that is executed sequentially, the intra-tile loops that are actually parallel do not end up be-
ing outer in the tile: this goes against vectorization of the transformed source for which we rely
on the native compiler. Also, the polyhedral tiled code is often complex for a compiler to further
analyze and say, permute and vectorize. Hence, as part of a post-process in the transformation
framework, a parallel loop is moved innermost within a tile, and annotations are used to mark
the loop as vectorizable (see A for details about code vectorization). Similar reordering is possible
to improve spatial locality that is not considered by our cost function due to the latter being fully
dependence-driven. Note that the tile shapes or the schedule in the tile space is not altered by such
post-processing.

6.3.4 Polyhedral Code Generation with CLooG

The code generation stage generates a scanning code of the iteration domains of each statement
with the lexicographic order imposed by the schedule. Statement instances that share the same
date are typically executed under the same loop, resulting in loop fusion. Scanning code is typically

6.3. METHOD 61

an intermediate, AST-based representation that can be translated to an imperative language such
as C or FORTRAN.

For many years this stage has been considered to be one one of the major bottlenecks of poly-
hedral optimization, due to the lack of scalability of the code generation algorithms. Eventually
the problem was addressed by the work of Bastoul [8, 9] who proposed an extended version of
Quilleré’s algorithm [57] that significantly outperformed previously implemented techniques such
as the ones by Kelly et al. in the Omega framework [43] or by Griebl in the Loopo framework [37].
The only constraints imposed by the CLooG code generator are (1) to represent iteration domains
with a union of polyhedra, and (2) to represent scheduling functions as affine forms of the iteration
domain dimensions. This general setting removes previous limitations such as schedule invertibil-
ity [6].

Code generation time is a function of the number of statement domains and the depth of the
loop structure to be generated. Polyhedral tiling can be performed directly with CLooG when us-
ing constant (i.e., scalar) tile sizes, by extending the dimensionality of the iteration domains. This
approach significantly increases code generation time, because of the higher number of domain
dimensions. In PolyOpt this problem is avoided by the parametric tiling approach: the domain
dimension is not extended before using CLooG, but instead after the polyhedral code generation.
Preliminary results demonstrating the strong scalability gain for code generation time can be found
in [39].

The CLooG code generator is unanimously considered the state-of-the-art polyhedral code
generator, as it implements the latest and most scalable algorithm for code generation [8]. Given
the polyhedral representation of the SCoP together with the schedules computed by Pluto, it out-
puts a CLooG AST in an internal representation referred to as CLAST. This representation is then
translated back into a Sage AST.

6.3.5 Translation to Sage ASTs

The translation of a CLooG AST to a Sage AST is based on a bottom-up traversal of the CLooG CLAST
IR, which involves

• re-mapping of control structures and expressions

• mapping back to symbols that existed in the original program (e.g., names of arrays and pa-
rameters)

• introduction of new symbols in symbol tables (e.g., new iterators)

• rewriting of array index expressions and loop bounds in terms of the new iterators

6.3.6 Parametric Tiling

Before providing a detailed description of our approach to parametric tiling imperfectly nested
loops, we first use a number of examples, figures and pseudocode fragments to explain the key
ideas behind the approach.

We first begin by discussing the approach to generation of parametric tiles in the context of
perfectly nested loops. We then discuss the conditions under which we can tile imperfectly nested
loops, followed by a sketch of our approach to geometric separation of tiles for imperfectly nested
loops.

Parametric Tiling for a Single Statement Domain

Consider the simple 2D perfectly nested loop shown in Figure 6.3(a). The perfect loop nest contains
an inner loop j whose bounds are arbitrary functions of the outer loop variable i. Consider a non-
rectangular iteration space displayed in Figure 6.3(d), corresponding to the perfect loop nest in this

62 CHAPTER 6. THE POLYHEDRAL FRAMEWORK

f o r (i = l b i ; i<=ubi ; i += s t i) {
f o r (j = l b j (i) ; j<=ubj (i) ; j += s t j)

S (i , j) ;
}

(a) A p e r f e c t l y n e s t e d loop

/∗ t i l e d loop ∗/
f o r (i t = l b i ; i t <=ubi−(Ti−s t i) ; i t += T i) {

. . . (code t i l e d along j) . . .
}
/∗ e p i l o g loop ∗/
f o r (i = i t ; i<=ubi ; i += s t i) {

f o r (j = l b j (i) ; j<=ubj (i) ; j += s t j)
S (i , j) ;

}

(b) T i l i n g t h e outermost loop i

f o r i t
[scan code t o o b t a i n lbv , ubv]
i f (l b v < ubv) {

[p r o l o g j]
[t i l e d j]
[e p i l o g j]

} e l s e {
[u n t i l e d j]

}
}
[e p i l o g i]

(c) A f t e r t i l i n g l o o p s i and j

i

j

Ti

Iteration space

(d) I t e r a t i o n space (t i l e d along i a x i s)

i

j

Ti

Epilog

Core tiles

Prolog
Tj

(e) I t e r a t i o n space (t i l e d along i and j a x e s)

/∗ t i l e d i ∗/
f o r (i t = l b i ; i t <=ubi−(Ti−s t i) ; i t += T i) {

/∗ scan code ∗/
l b v = MIN INT ;
ubv = MAX INT ;
f o r (i = i t ; i<= i t +(Ti−s t i) ; i += s t i) {

l b v = max (lbv , l b j (i)) ;
ubv = min (ubv , ubj (i)) ;

}
i f (lbv<ubv) {

/∗ p r o l o g j ∗/
f o r (i = i t ; i<= i t +(Ti−s t i) ; i += s t i)

f o r (j = l b j (i) ; j<=lbv−s t j ; j += s t j)
S (i , j) ;

/∗ t i l e d j ∗/
f o r (j t = l b v ; j t <=ubv−(Tj−s t j) ; j t += T j)

f o r (i = i t ; i<= i t +(Ti−s t i) ; i += s t i)
f o r (j = j t ; j<= j t +(Tj−s t j) ; j += s t j)

S (i , j) ;
/∗ e p i l o g j ∗/
f o r (i = i t ; i<= i t +(Ti−s t i) ; i += s t i) {

f o r (j = j t ; j<=ubj (i) ; j += s t j)
S (i , j) ;

}
} e l s e {

/∗ u n t i l e d j ∗/
f o r (i = i t ; i<= i t +(Ti−s t i) ; i += s t i)

f o r (j = l b j (i) ; j<=ubj (i) ; j += s t j)
S (i , j) ;

}
}
/∗ e p i l o g i ∗/
f o r (i = i t ; i<=ubi ; i += s t i)

f o r (j = l b j (i) ; j<=ubj (i) ; j += s t j)
S (i , j) ;

(f) D e t a i l e d p a r a m e t r i c t i l e d code

Figure 6.3: Parametric tiling of a perfectly nested loop

6.3. METHOD 63

example. Since loop i is outermost, strip-mining or tiling this loop is straightforward and always
legal (that is, to partition the loop i’s iteration space into smaller blocks whose size is determined
by the tile size parameter Ti). Figure 6.3(d) shows the partitioning of the iteration space along
dimension i. Figure 6.3(b) shows the corresponding code structure, with a first segment covering
as many “full” tile segments along i as possible (dependent on the parametric tile size Ti). The
outer loop in the tiled code is the inter-tile loop that enumerates all tile origins. Following the full-
tile segment is an epilog section that covers the remainder of iterations (to be executed untiled).
The loop enumerates the points within the last incomplete group of outer loop iterations that did
not fit in a complete i-tile of size Ti.

For each tiling segment along i, full tiles along j are identified. For ease of explanation, we show
a simple “explicit scanning” approach to finding the start of full tiles, but the actual implementation
will compute it directly for affine loop bounds by evaluating the bound functions at corner points
of the outer tile extents. The essential idea is that the largest value for the j-lower bound (lbv) is
determined over the entire range of an i-tile and it represents the earliest possible j value for the
start of a full ij tile. In a similar fashion, by evaluating the upper-bound expressions of the j loop,
the highest possible j value (ubv) for the end of a full tile is found. If lbv is greater than ubv, no full
tiles exist over this i-tile range. In Figure 6.3(e), this is the case for the last two i-tile segments. For
the first i-tile segment in the iteration space (the second vertical band in the figure, the first band
being outside the polyhedral iteration space), lbv equals ubv. For the next two i-tile segments, we
have some full tiles, while the following i-tile segment has ubv greater than lbv but by a smaller
amount than the tile size along j.

The structure of the tiled code is shown in abstracted pseudo-code in Figure 6.3(c), and with
explicit detail in Figure 6.3(f). At each level of nesting, for a tile range determined by the outer tiling
loops, the lbv and ubv values are computed. If ubv is not greater than lbv, an untiled version of the
code is used. If lbv is less than ubv, the executed code has three parts: a prolog for j values up to
lbv − stj (where stj is the loop stride in j dimension), an epilog for j values greater than or equal
to jt (where jt is the inter-tile loop iterator in j dimension), and a full-tile segment in between the
prolog and epilog, to cover j values between the bounds. The code for the full-tile segment can be
generated using a recursive procedure that traverses the levels of nesting. The detailed tiled code
for this example is shown in Figure 6.3(f).

The separation of partial tiles and full tiles thanks to nested prolog-epilog regions leads to gen-
erating loops with a simple control (ie, the loop bounds have a low computational cost). The draw-
back is a potentially exponential code size. An alternative to control the code size explosion is to use
complex min/max expressions into the loop bounds directly, such that a single loop in the target
code implements several partial tile cases. There is a trade-off between 1) preventing code size ex-
plosion using the prolog-epilog approach which pollutes the instruction cache, and 2) generating
smaller code size but then introducing a higher control overhead in computing the loop bounds.
We plan to investigate this trade-off, to tune a parametric tiling code generation heuristic for full
tile separation that would maximize performance.

Tiling of Multi-Statement Domains

The iteration-space view of legality of tiling for a single statement domain is expressed as follows:
a hyperplane H is valid for tiling if Hdi ≥ 0 for all dependence vectors di [41]. This condition
states that all dependences are either along the tiling hyperplane or enter it from the same side.
This sufficient condition ensures that there cannot be cyclic dependences between any pair of tiles
generated using families of hyperplanes that each satisfy the validity condition.

For a collection of polyhedral domains corresponding to a multi-statement program (from im-
perfectly nested loops), the generalization of the above condition is: a set of affine-by-statement
functions φ (corresponding to each statement in the program) represents a valid tiling hyperplane

64 CHAPTER 6. THE POLYHEDRAL FRAMEWORK

f o r (i = l b i ; i<=ubi ; i += s t i) {
f o r (j 1 = l b j 1 (i) ; j 1<=ubj1 (i) ; j 1 += s t j 1) {

S1 (i , j 1) ;
}
f o r (j 2 = l b j 2 (i) ; j 2<=ubj2 (i) ; j 2 += s t j 2) {

S2 (i , j 2) ;
}

}
(a) An i m p e r f e c t loop n e s t s t r u c t u r e

i

j

Ti

S1a

S2a
S1b

S2b

Epilog j1

Core tiles j1

Prolog j1

Prolog j2

Core tiles j2

Epilog j2

Tj

(b) One t i l e segment along i dimension

f o r i t
[scan code t o o b t a i n lbv1 , ubv1]
i f (l b v 1 < ubv1) {

[scan code t o o b t a i n lbv2 , ubv2]
[p r o l o g j 1]
[t i l e d j 1]
i f (l b v 2 < ubv2) {

[e p i l o g j 1 + p r o l o g j 2]
[t i l e d j 2]
[e p i l o g j 2]

} e l s e {
[e p i l o g j 1 + u n t i l e d j 2]

}
} e l s e {

[scan code t o o b t a i n lbv2 , ubv2]
i f (l b v 2 < ubv2) {

[u n t i l e d j 1 + p r o l o g j 2]
[t i l e d j 2]
[e p i l o g j 2]

} e l s e {
[u n t i l e d j 1 + u n t i l e d j 2]

}
}

}
[e p i l o g i]

(c) The f i n a l t i l e d code

Figure 6.4: Tiling an imperfectly nested loop

if φt(~t) − φs(~s) ≥ 0 for each pair of dependences (~s,~t) [14]. The affine-by-statement function φ
maps each instance of each statement to a point in a dimension of a target iteration space. A set of
linearly independent φ functions maps each instance of each statement into a point in the multi-
dimensional target space. If each φ function satisfies the above generalized tiling condition, the
multi-statement program can be rectangularly tiled in the transformed target iteration space. If
only a (contiguous) subset of the φ functions satisfies the generalized tiling condition, tiles can be
formed using families of hyperplanes from that subset.

Efficient code generation for multi-statement domains was a significant challenge until the
Quilleré algorithm [57] was developed. Its implementation in CLooG is now widely used for gen-
erating code for multi-statement domains. The Pluto system uses CLooG for generating (non-
parametric) tiled code for imperfectly nested loop programs. However, Pluto cannot generate
parametric tiled code for imperfectly nested loops. Our approach to parametric tiling of imper-
fect loop-nests will combine the power of the Quilleré algorithm (in sorting and separating polyhe-
dra corresponding to multiple-statement domains) with a geometric approach for separating tile,
using the AST structure generated by the Quilleré algorithm for non-tiled imperfectly nested loop
code generation.

First an input program is transformed to a target domain using scattering functions that satisfy
the above generalized tiling condition. For this purpose, the scattering functions generated by the
Pluto system are used, but any set of schedules that satisfy the generalized tiling condition can be
used instead. The imperfectly nested loop structure generated by use of the Quilleré algorithm is
scanned to generate the tiled code structure as described in the next subsection.

6.4. RESULTS 65

Geometric Separation of Tiles for Overlapping Statement Domains

Figure 6.4 illustrates the approach to geometric tile separation. The imperfectly nested loop i con-
sidered in this example contains two inner loops with loop bounds that are functions of loop it-
erator i and other global parameters such as tile sizes and input problem sizes. The Quilleré al-
gorithm generates efficient (non-tiled) loop code for multi-statement polyhedral domains arising
from imperfectly nested loops. Where feasible, the sorting of polyhedra within the Quilleré algo-
rithm enables separation of statements in the point-wise (non-tiled) code. The key tiling question
for this two-statement example is: if the two statements S1 and S2 have been separated out in the
point-wise code by the Quilleré algorithm, under what conditions can we also separate out tiles
corresponding to these two statements? Our answer to this question is to use the lower and upper
bound values for the two statements, (computed in a similar manner to the perfect-nest example
above) and exploit the fact that all dependences are lexicographically non-negative in all the tiling
dimensions (due to satisfaction of the generalized tiling condition).

For the example shown in Figure 6.4(a), since lbv1 is less than ubv1, we have a separable set of
tiles for S1, and since lbv2 is less than ubv2, there are also separable tiles for S2. The prolog of S2
and epilog of S1 need to be combined and interleaved to ensure satisfaction of any dependences
between S1 to S2 or vice versa. The pseudocode in Figure 6.4(c) shows the different possible cases
to be considered and the code corresponding to the four combinations.

6.4 Results

The PolyOpt subsystem prototype is expected to be complete by September 2010 (end of project’s
Phase 1).

66 CHAPTER 6. THE POLYHEDRAL FRAMEWORK

Chapter 7

AST-based Transformations in the

Platform-Aware Optimizer

7.1 Introduction andMotivation

This chapter summarizes the design of AST-based transformations in the Platform-Aware Opti-
mizer (PAO). As discussed in Chapter 5, each of these transformations will be followed by incre-
mental re-analysis. These transformations complement the polyhedral transformation framework
described in Chapter 6, both by performing transformations on regions of code that are ineligible
for polyhedral transformation (non-SCoP regions) and by performing transformations that are not
included in the polyhedral framework (such as data transformations, idiom recognition, scalar re-
placement, and loop-invariant redundancy elimination). AST-based transformations contribute to
the overall goal of the PAO to automate selection of an appropriate set of high level transformations
for a given platform as viewed through the lens of the platform-specific resource characteristics
derived by the PACE RC tools.

Most of the non-polyhedral transformations in the PAO are extensions of classical high-level
loop and data transformations introduced in previous work [71, 3, 61]. However, there has been
relatively little attention paid in past work to the question of which transformations should be auto-
matically selected for optimizing performance, especially for the wide set of transformations avail-
able in the PAO’s arsenal. Automatic selection of transformations is a critical issue for the PACE

Compiler because the developers of the PACE Compiler do not know a priori the performance
characteristics of the target platform. In PACE, the compiler must adapt to new platforms using
measured values for performance-critical system characteristics, where a vendor compiler can be
carefully tailored to match a known processor release.

An important aspect of high level transformations in the PAO that distinguishes them from
many lower-level transformations in the TAO is that most high level transformations are reversible
and, if improperly selected, can degrade performance just as effectively as they improve perfor-
mance. For example, loop interchange can improve the cache locality of a loop nest with a poor
loop ordering, but it can also degrade the performance of a well-tuned loop nest. In contrast,
while the performance improvement obtained by traditional lower-level optimizations (e.g., op-
erator strength reduction) can vary depending on the source program and target platform, such
optimizations typically do not significantly degrade performance.

Our overall approach to address this issue is to leverage the separation of concerns mentioned
in Chapter 5 among Legality Analysis, Profitability Analysis, and IR Transformation, and to use a a
quantitative approach to profitability analysis. The problem of selecting high level transformations
is decomposed into different optimization problems that address the utilization of different classes

Principal Contacts For This Chapter: Zoran Budimlić and Vivek Sarkar

67

68 CHAPTER 7. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

of hardware resources (e.g., memory hierarchy, inter-core parallelism, intra-core parallelism). The
formulations of the optimization problems are based on quantitative cost models, which are built
on measured characteristics of the target system and application characteristics that include mea-
sured context-sensitive profiles. Multiple transformations may be used to optimize a single class of
hardware resources (e.g., loop interchange, tiling and fusion may all be used in tandem to improve
memory hierarchy locality), and a single transformation may be employed multiple times for dif-
ferent resource optimizations (e.g., the use of loop unrolling to improve both register locality and
instruction-level parallelism).

7.2 Functionality

As described in § 5.2, the PAO takes as input refactored program units (RPUs) generated by the
Application-Aware Partitioner (AAP), and generates as output transformed versions of each RPU

using a combination of polyhedral and AST-based transformations.

7.2.1 Input

The primary input for a single invocation of the AST-based transformer is the HIR (SAGE III IR) for
an RPU, as generated by the AAP. Additional inputs (as shown in Figure 5.1) include compiler
directives from the optimization plan, resource characteristics for the target platform, profile in-
formation with calling-context-based profile information for the source application, and TAO cost
analysis feedback (Path 3 in Figure 5.2).

7.2.2 Output

As its output, the AST-based transformer produces a transformed HIR for the input RPU. The trans-
formed code can be translated into either C source code or into the IR used in the Target-Aware
Optimizer (TAO). This latter case uses the PAO→TAO IR translator, described in Chapter 8; the
translator is also used in the PAO–TAO query mechanism, as shown in Figure 5.2.

7.3 Method

The overall structure of AST-based transformations in the PAO for a single function is as follows.
Though not listed explicitly, the incremental program reanalysis described in § 7.3.6 is assumed
to be performed after each transformation listed below. The transformations described below will
be performed on all functions within the RPU, starting with entry functions (functions called from
other RPU’s), and transitively traversing the call graph within the RPU.

1. Perform function inlining and path duplication within an RPU. This step goes beyond code
duplication performed by the AAP, and is driven by context-sensitive and path-sensitive exe-
cution profiles obtained by the PACE Runtime System.

2. Perform canonical programanalyses. As indicated in Chapter 5, these analyses include Global
Value Numbering, Constant Propagation, and Induction Variable Analysis. This analysis in-
formation will be updated incrementally, whenever a transformation is performed by a later
step.

3. Perform preprocessing transformations. The purpose of this step is to increase opportunities
for subsequent polyhedral and non-polyhedral transformations. It will start with a clean-up
phase that includes Unreachable Code Elimination, Dead Code Elimination, and to sepa-
rate SCoP-compliant and non-SCoP-compliant statements into separate loop nests as far as
possible. (SCoP stands for “Static Control Part”, and represents a loop nest that is amenable

7.3. METHOD 69

to polyhedral transformations. See § 6.2.1.) It will also attempt to maximize the number of
enclosing perfectly nested loops for each statement.

4. Identify SCoPs in each function, and invoke the PolyOpt component separately for each
SCoP. As described in Chapter 6, the PolyOpt component performs a number of loop trans-
formations on each SCoP including fusion, distribution, interchange, skewing, permutation,
shifting and tiling, in addition to identifying vectorizable loops that are marked as such and
passed to TAO for vectorization described in Appendix A.

5. Perform the following steps for each maximal non-SCoP loop nest in the IR 1

(a) Pattern-driven Idiom Recognition — if the loop nest is found to match a known library
kernel (or can be adapted to make the match), then replace the loop nest with the ap-
propriate library call. This transformation can be applied even to the SCoP-compliant
loop nests, and it may even lead to a better code than polyhedral transformations. We
will evaluate both alternatives. More details are given in § 7.3.1.

(b) Loop Privatization — create private per-iteration copies of scalar and array variables,
when legal to do so.

(c) Locality optimization — use the measured characteristics of the target machine’s mem-
ory hierarchy (from the PACE RC tools) to select a set of interchange, tiling and fusion
transformations to optimize locality (with support from other iteration-reordering loop
transformations as needed, such as loop reversal and loop skewing).

(d) Parallelization of outermost loop nests — if the loop nest does not already have explicit
OPENMP parallelism, use OPENMP to automatically create parallel loops at the outer-
most level, with loop coalescing for efficiency.

(e) Unrolling of innermost loop nests — use iterative feedback from the TAO (guided by
measured processor characteristics) to select unroll factors for each innermost loop
nest. This transformation can be applied even to the loops produced by the PolyOpt
component. More details are provided in § 7.3.4.

(f) Scalar replacement — perform loop-carried and loop-independent scalar replacement
of array and pointer accesses within the loop nest. More details are provided in § 7.3.5

(g) Commit all transformations and perform incremental reanalysis

6. Return the updated SAGE III IR to the compiler driver so that it can invoke the later steps of
compilation, including the PAO→TAO IR translator.

7.3.1 Pattern-driven Idiom Recognition

In some cases, a computational kernel in the input application may be implemented by a platform-
specific library such as BLAS call. If so, it is usually beneficial to replace the user-written kernel
by call to the platform-specific library. However, in addition to recognizing opportunities for this
transformation, it is important to factor in the cost of adaptation (e.g., additional copies).

For example, consider the code fragment in Figure 7.1. On one platform, the PAO might select
a combination of tiling, interchange, unrolling, and scalar replacement as usual. Tile sizes are ini-
tialized using analytical cost model and updated by runtime, while the unroll factors are proposed
by cost model and refined by feedback from TAO.

However, on a different platform, the PAO might recognize that the computation above can be
implemented with two library calls (matrix multiply and transpose) that are available in optimized

1Transformations in the list will be applied to the non-SCoP loop nest. The PolyOpt framework applies some of these same
transformations, such as loop tiling, to the SCoP loop nests, making it unnecessary for the PAO to apply them individually.

70 CHAPTER 7. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

for(i = 0; i < n; i++){

for (j = 0; j < n; j++){

a[i,j] = 0;

for (k = 0; k < n; k++){

a[i,j] = a[i,j] + b[j,k] * c[k,i];

}

}

}

Figure 7.1: Matrix multiplication and transpose

form on that platform. The PAO will still explore transformations as in previous case (using system
characterization values for this particular platform), but it may conclude that the cost of using li-
brary routines will be lower than the compiler-optimized version for values of n greater than some
threshold.

7.3.2 Loop Tiling

Loop tiling is a critical optimization for effectively using the memory hierarchy on the target ma-
chine. In order to maximize cache usage, PAO will have to select the right combination of the tile
size, unroll factor, and loops to interchange. Tile size will naturally depend on the measures values
for cache size and associativity of the target platform from the PACE RC tools. The PAO will use an
analytical model parameterized (Sections 6.2.6 and 6.3.6) by the estimates of the regions of the
array that are accessed in the loop nest and the measured cache sizes to determine the initial tile
size. That tile size will, in turn, be tuned at runtime using the online feedback-directed parameter
selection facility of the PACE RTS (§ 10.3.4). The code for the parameterized version of the loop
will be packaged for runtime tuning using the approach described in § 5.3.8. The non-SCoP loop
nests that cannot be parameterized for tiling will still be tiled by the PAO using a simple static tiling
approach.

Figure 7.2 shows the example from Figure 7.1, tiled with a BxB tile size across the i and j di-
mensions, as might be done to prepare for online tuning by the RTS.

for(i2 = 0; i2 < n; i2 += B){

for(j2 = 0; j2 < n; j2 += B){

a[i2,j2] = 0;

for(k = 0; k < n; k++){

for(i1 = i2; i1 < min(i2 + B - 1, n); i1++){

for(j1 = j2; j2 < min(j2 + B - 1, n); j1++){

a[i1,j1] = a[i1,j1] + b[j1,k] * c[k,i1];

}

}

}

}

}

Figure 7.2: Matrix multiplication and transpose, tiled with a BxB tile size

7.3. METHOD 71

for(i2 = 0; i2 < n; i2 += B){

for(j2 = 0; j2 < n; j2 += B){

a[i2,j2] = 0;

for(k = 0; k < n; k++){

for(j1 = j2; j1 < min(j2 + B - 1, n); j1++){

for(i1 = i2; i1 < min(i2 + B - 1, n); i2++){

a[i1,j1] = a[i1,j1] + b[j1,k] * c[k,i1];

}

}

}

}

}

Figure 7.3: Matrix multiplication and transpose, tiled with a BxB tile size, with i1 and j1 loops in-
terchanged

7.3.3 Loop Interchange

Loop interchange is another important compiler transformation that can significantly improve the
performance through improving locality and increasing the effect of loop tiling described above.

For example, in the tiled matrix multiplication and transpose example on Figure 7.2, the el-
ements of a tile are accessed in a row-major order, while the arrays are stored in column-major
order in Fortran. If the whole tile fits in cache and the arrays are lined up properly to avoid conflict
misses, then the code on figure 7.2 should perform equally well regardless of the order of the i1

and j1 loops. If not, the performance can be improved by interchanging the two inner loops, as
shown on Figure 7.3.

7.3.4 Unrolling of Nested Loops

Loop unrolling can significantly improve code performance by reducing the loop iteration over-
head and increasing the size of the loop body, making further optimizations of the loop body more
effective. However, excessive loop unrolling can create additional register pressure, which can
have detrimental effect on performance if the register allocator is forced to spill some values to
memory.

For each loop nest, PAO will generate multiple unroll configurations and invoke TAO to evaluate
the code generated for each configuration using the PAO-TAO query interface described in § 5.3.5.
TAO’s answers to PAO’s queries (§ 9.3.4) will be then analyzed by PAO to select the best unroll con-
figuration.

PAO will prune this search space sing an analytical cost model to compute the infeasible unroll
configurations based on the register pressure of the unrolled loop and the measured number of
registers available on the target platform. PAO will only evaluate the feasible unroll configurations.

Figure 7.4 shows an example of a search space for unroll configurations for the middle and
outermost loops in a triple nested loop from Figure 7.1, on a hypothetical platform with 16 registers.
Instead of searching the whole space of 380 unroll configurations, PAO will only evaluate 44 feasible
unroll configurations.

7.3.5 Scalar Replacement

Scalar replacement is another classical optimization that will have a large impact on the perfor-
mance of the code generated by the PAO. Scalar replacement reduces memory access, by rewriting
the code so that the compiler can store a reused value in a register instead of in memory. Unfortu-

72 CHAPTER 7. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

Pruned 
search 
space 

|

0

|

1

|

2

|

3

|

4

|

5

|

6

|

7

|

8

|

9

|

10

|

11

|

12

|

13

|

14

|

15

|

16

|

17

|

18

|

19

|

2

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

|18

|19

|20

 u1, unroll factor for outermost loop

 u
2
,
u
n
ro

ll
 f

ac
to

r
fo

r
m

id
d
le

 l
o
o
p

Infeasible boundary

Feasible region

(44 points)

Infeasible region

(346 points)

PAO explores pruned subset of 
search space for unroll factors 
and repeatedly invokes TAO for 
each data point to evaluate code 
that will be generated for each 

unroll configura=on 

Feasibility and infeasibility are 
computed  with respect to 

register pressure of unrolled loop 
rela=ve to number of registers 
available in target pla@orm 

Figure 7.4: Search Space for Loop Unrolling Configurations

nately, this rewrite can both increase register pressure and reduce available parallelism. Thus, the
PAO will need to strike the right balance between the potential for improvement and the potential
for degradation by choosing carefully those array elements to be rewritten as scalar variables. This
choice must work well within the tile size and unroll factors that the PAO has selected for the loop,
as discussed earlier.

Figure 7.5 shows the code from Figure 7.1 where the array element a[i,j] has been replaced
with a scalar sum.

7.3.6 Incremental Reanalysis

Incremental reanalysis in the PAO is supported by maintaining four auxiliary hierarchical struc-
tures on the HIR described in the following paragraphs — a Region Structure Tree (RST), a Region
Control Flow Graph for each region, Region-SSA form for each region, and a Region Dependence
Graph for each region. The partitioning of the input program into regions can be tailored to opti-
mizations of interest, subject to the constraints defined below. A common partitioning is to place

for (i = 0; i < n; i++){

for (j = 0; j < n; j++){

sum = 0;

for (k = 0; k < n; k++){

sum = sum + b[j,k] * c[k,i];

}

a[i,j] = sum;

}

}

Figure 7.5: Matrix multiplication and transpose with scalar replacement of the a[i,j] element

7.3. METHOD 73

S1: x = 1;

S2: if (y>M) goto S12;

S3: i = 1;

S4: if (i>=M) goto S12;

S5: if (i==M) goto S12;

S6: y = invoke sqrt(i);

S7: $d0 = arr[i-1];

S8: $d1 = $d0 / y;

S9: arr[i] = $d1;

S10: i = i + 1;

S11: goto S4;

S12: y = x + 1;

S1: x = 1;

S2: if (y>M) goto S14;

S3: i = 1;

S4: LoopRegionEntry:

Use(i,arr,y) Def(i,y)

S5: if (i>=M) goto S12;

S6: if (i==M) goto S12;

S7: y = invoke sqrt(i);

S8: $d0 = arr[i-1];

S9: $d1 = $d0 / y;

S10: arr[i] = $d1;

S11: i = i + 1;

S12: goto S4;

S13: LoopRegionExit

S14: y = x + 1;

(a) Original Code (b) Code with Region Labels

Figure 7.6: Example IR with Region Labels

each loop in a separate region (as in the Loop Structure Tree [61]) but other partitions are possible.

Region Structure Tree The Region Structure Tree represents the region nesting structure of the
RPU being compiled. Each region node (R-node) of the RST represents a single-entry region of the
original (flat) control flow graph (CFG) for the procedure or function, and each leaf node (L-node)
of the RST corresponds to a node in that CFG. Hierarchical nesting of regions is captured by the
parent-child relation in the RST. The RST can accommodate any partitioning of the CFG into hier-
archical single-entry regions.

The root node of the RST represents the entire RPU being compiled. A non-root R-node rep-
resents a subregion of its parent’s region. An L-node represents a CFG node (basic block) that is
contained within the region corresponding to the parent of the L-node. We impose three impor-
tant constraints on legal region structures in a RST:

1. Tree Structure The nesting structure for regions must form a single connected tree (specif-
ically, the RST), and there must be a one-to-one correspondence between leaf nodes in this
tree and nodes in the input CFG. This constraint implies that if two regions r1 and r2 in the
RST have a non-empty intersection, then it must be the case that either r1 ⊆ r2 or r2 ⊆ r1.

2. Proper Containment Each R-node must have at least one child in the RST that is an L-node.
This implies that the region corresponding to a non-root R-node r must be properly con-
tained within the region of its parent’s node parent(r) (because it will not contain at least
one L-node that is a child of parent(r)). Another consequence of this constraint is that there
can be at most as many region nodes as there are nodes in the input CFG.

3. Single-entry Regions Each region must be a single-entry subgraph of the input CFG. In the
(rare) event that the input CFG contains an irreducible subgraph (a strongly connected sub-
graph with multiple entries), then the entire irreducible subgraph must be included in a con-
taining single-entry region.

Thus, there may be several legal RST’s for the same input CFG (though they will all have the
same set of L-nodes). An R-node serves as a useful anchor for all information related to the region

74 CHAPTER 7. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

S7

S12

S11S10S9S8S6S5S2S1 S3 S4

Figure 7.7: Original Control Flow Graph

corresponding to the R-node. All of the region-local data structures are stored in the R-node for the
region, including references to the Region Control Flow Graph (RCFG), and the Region-SSA form
built upon the RCFG.

Figure 7.6.(a) shows an example intermediate representation, and its extension with region la-
bels in Figure 7.6.(b). The original (flat) CFG for this example is shown in Figure 7.7; it uses the
statement labels from Figure 7.6.(a). This CFG assumes the following: S4 performs the test of index
variable i for the loop; S10 performs the increment of index variable i in each iteration (following
a standard translation approach for for-loops); and the edge from S11 to S4 is the loop back-edge.
Let us assume that the compiler selects a two-level hierarchical region partition of the CFG in which
R2 = {S4, S5, S6, S7, S8, S9, S10, S11} is the inner region and R1 = {S1, S2, S3, R2, S12} is the
outer region. The RST for this region partition is shown in Figure 7.8; again, it uses the labels from
Figure 7.6.(a).

For annotating a region at the IR level, we add two statement labels (pseudo-instructions) into
the IR code list — LoopRegionEntry and LoopRegionExit. Figure 1(b) shows the IR code with these
new region labels (seeS4 andS13). TheLoopRegionEntry statement contains two sets,Use andDef,
which maintain the SummaryReferences of the current region R2 (details on SummaryReferences
will be discussed in the next section). The Use and Def sets for array variables can be made more
precise by using Array SSA form [45] instead of SSA form.

Region Control Flow Graph For each R-node, R, in the RST, we have a region-level control flow
graph, RCFG(R), that defines the local control flow for R’s immediate children in the RST (the im-
mediate children may be L-nodes or R-nodes). RCFG(R) must contain a node corresponding to
each node that is a child of R. RCFG(R) also contains two pseudo nodes: START and EXIT. The
START node is the destination of all region entry branches. Since R must be a single-entry region,
there is no loss in precision in using a single START node. All LCFG edges from START have the
same destination: the region’s entry node. The EXIT node is the target of all region exit branches.
In the example shown in Figure 7.6.(b), the START and EXIT nodes correspond to statements S4

and S13.
An edge e from X to Y within RCFG(R) represents control flow in region R. If edge e is a con-

ditional branch (i.e. if there are multiple outgoing edges from X in RCFG(R)), then it also carries
a label of the form (S,C) identifying condition C in IR statement S as the branch condition that

method level regionR1

S1 R2 S12S3

S4 S5 S6 S7

loop level regionS2

S8 S9 S10 S11

Figure 7.8: Region Structure Tree

7.3. METHOD 75

Start
(S4) S5 S6

S7 S8 S9

Exit
(S13)

RCFG(R1)

Start S1 R2 S14 ExitS2

S10 S11 S12

S3

RCFG(R2) (S5, T)

Figure 7.9: Region Control Flow Graph

enabled execution to flow along e. See (S5, T) in Figure 7.9 as an example. (Other labels have been
omitted so as to reduce clutter.)

For each control flow exit from region R, an edge is inserted in R’s RCFG with target EXIT, and
another edge is inserted in the RCFG of R’s RST parent from R to the exit destination. (If multi-
ple regions are being exited, then additional outer-region edges need to be inserted in enclosing
regions).

Figure 7.9 shows the RCFG’s for regions R1 and R2 from the RST in Figure 7.8. The statements
have been renumbered to match Figure 7.6.(b) and the graph for RCFG(R1) contains a node for
R2. In addition, note that the break statement is modeled as a premature loop exit edge from S5

in RCFG(R2) with destination = EXIT; there is also an edge in RCFG(R1) from node R2 to node
S14. These two edges in RCFG(R2) and RCFG(R1) represent continuation of the same control flow
through multiple levels of the RST when the if condition in IR statement S5 evaluates to true.

The algorithm for constructing the RCFG’s for a given RST starts from the root node of the given
RST, and builds the RCFG for each R-node recursively. The RCFG contains k + 2 nodes, where k
is the number of children of the R-node. A tricky part of the algorithm lies in propagating control
flow edges to ancestor regions. If Ti and Tj are siblings in the RST, then exactly one edge is created
in their parent’s RCFG. Otherwise, additional edges are inserted in all ancestor RCFG’s up to and
including LCA(Ti, Tj).

Each R-node R maintains a Summary Use set and Summary Def set (shown in Figure 7.6.(b))
which includes summary references for use by its parent regionRp as follows:

• IfR contains at least one def of a variable V , then include a single summary def of variable V
inR’s Summary Def set.

• If R includes at least one use of variable V , then include a single summary use of variable V
inR’s Summary Use set.

Summary references can be initially computed in a bottom-up traversal of the RST, and can then
be updated incrementally. More precise summaries can be obtained by suppressing the inclusion
of a summary use of variable V in R when there is no upwards exposed and downwards exposed
uses [1] of V inRp, and by suppressing the inclusion of a summary def of variable V inRp when V
can be renamed [30] to a local/private variable in regionR.

Region-SSA Construction A Region-SSA form structure is built for each RCFG. As mentioned
earlier, the pseudo-instructions LoopRegionEntry and LoopRegionExit are used to annotate the R-
node in its parent region. To enable the interaction between parent regionRp and child regionRc,
each child region Rc stores summary Use/Def sets. These sets enable Rc to be treated uniformly
like other statements in Rp’s scope (except that Rc may potentially contain more defs and uses
than normal statements). Rc also maintains a Use map and a Def map which maintain the map

76 CHAPTER 7. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

S4: Loop Region Entry:

Use Set (y_1_0,arr_1_0,i_1_0) Def Set (y_1_1,i_1_1)

Use Map: (y_2_0 7→ y_1_0, arr_2_0 7→ arr_1_0,

i_2_0 7→ i_1_0)

Def Map: (y_2_1 7→ y_1_1, i_2_1 7→ i_1_1)

S5: i_2_1 = Phi(i_2_0 #S4, i_2_2 #S15);

S6: y_2_1 = Phi(y_2_0 #S4, y_2_2 #S15);

S7: if i_2_1 >= M goto S16;

S8: if i_2_1 == M goto S16;

S9: y_2_2 = invoke sqrt(i_2_1);

S10: $i0 = i_2_1 - 1;

S11: $i1 = arr_2_0[$i0];

S12: $i2 = $i1 / y_2_2;

S13: arr_2_0[i_2_1] = $i2;

S14: i_2_2 = i_2_1 + 1;

S15: goto S5;

S16: Loop Region Exit

(a) Region-SSA for Region R2

S1: x_1_0 = 1;

S2: if y_1_0 <= M goto S17;

S3: i_1_0 = 1;

S4: Loop Region Entry

Use Set (y_1_0,arr_1_0,i_1_0) Def Set(y_1_,i_1_1)

S16: Loop Region Exit

S17: y_1_2 = Phi(y_1_0 #S2, y_1_1 #S16);

S18: y_1_3 = x_1_1 + 1;

(b) Region-SSA for Region R1

Figure 7.10: Region-SSA Example

between the Summary References and corresponding local variables inRc. Construction of Region-
SSA form for a given RST is accomplished by a bottom up traversal of the RST. It includes variable
maps between the summary reference variables and their corresponding region local variables.

Figure 7.10 shows the translated Region-SSA for the example shown in Figure 7.6.(b). To demon-
strate the region, we split the IR into two parts corresponding to region R1 (the procedure level re-
gion shown in Figure 7.10.(b)) and R2 (the loop level region shown in Figure 7.10.(a)). The Use/Def
variable maps are listed after the region entry label. Compared with standard SSA form, Region-
SSA also maintains a variable mapping between the parent and child regions. Thus, Region-SSA
construction for the parent region only needs to examine the child region’s summary references,
and not its code.

Out-of-Region-SSATransformation The algorithm for transforming out of Region-SSA form main-
tains the correctness of a value propagation between an R-node R and its parent by inserting a
prologue and an epilogue into R’s region. For prologue creation, the assignment operations are
created from all of the variables in R’s Use set to their corresponding variables in R’s Use map, and
inserted in front of the region entry node. Similarly, all of the variables in R’s Def set should be
assigned by their corresponding variables in R’s Def map for creating the epilogue.

7.3. METHOD 77

Incremental Update Algorithm Given a region R, a compiler transformation can insert/delete
statements and insert/delete uses/defs of variables. For region-local (private) variables, only the
current region needs to be reconstructed. For inserted/deleted variables in ancestor regions, we
enumerate the scenarios and rules for identifying the regions that need to be reconstructed as fol-
lows (the identified regions are put into a reconstruction list):

• Insert use variable up (up is a variable in parent regionRp and up /∈R’s Use set):

1. add up into theR’s Use set;
2. create a corresponding variable uc for using inR;
3. add the pair uc 7→ up intoR’s Usemap;
4. addR into the reconstruction list;

• Remove a use variable up (up is a variable in parent region and up ∈R’s Use set):

1. remove up from Use set;
2. remove up related pair from Usemap;
3. addR into the reconstruction list;

• Insert a def variable dp at statement S (i.e. dp is a variable in parent region Rp and da /∈ R’s
Def set):

1. add dp intoR’sDef set;
2. create a corresponding variable dc for using inR;
3. add dc 7→ dp intoR’sDef map;
4. if dp /∈ Use set and S does not dominateR’s entry node, then

(a) add dp intoR’s Use set

(b) create a corresponding variable dinit and add dinit 7→ dp intoR’s Usemap;

5. add bothR andRp into the reconstruction list;

• Remove a def variable: dp (i.e. dp is a variable in parent regionRp and dp ∈R’sDef set):

1. remove the variable from theDef set;
2. remove this variable related pair fromDef map;
3. add bothR andRp into the reconstruction list;

The scenarios and rules list above handle the updating between the parent and child regions.
These rules can also be applied recursively for handling the ancestor/child case. Given those re-
gions in the reconstruction list, the Region-SSA construction algorithm is called to rebuild Region-
SSA form.

78 CHAPTER 7. AST-BASED TRANSFORMATIONS IN THE PLATFORM-AWARE OPTIMIZER

Chapter 8

The Rose to LLVM Translator

The Platform-Aware Optimizer is implemented on top of the Rose infrastructure, while
the Target-Aware Optimizer is implemented on top of the LLVM infrastructure. Thus,
PACE needs a translator from the SAGE III IR used in the PAO to the LLVM IR used in the
TAO. This chapter describes PACE-cc, the tool that implements this translation.

8.1 Introduction

Figure 1.2 provides a high-level overview of the PACE system design. This chapter focuses on the
design of PACE-cc, a translator from the SAGE III IR to the LLVM IR. The SAGE III IR is an abstract
syntax tree (AST) representation produced by the Rose compiler and used by the Platform-Aware
Optimizer for transformations. The Target-Aware Optimizer operates on the LLVM IR, a linear code
in static single-assignment form (SSA).

8.1.1 Motivation

The Platform-Aware Optimizer is implemented on top of the Rose infrastructure, while the Target-
Aware Optimizer is implemented on top of the LLVM infrastructure. Thus, PACE needs a translator
from the Sage III IR used in Rose to LLVM’s IR. PACE-cc is the Sage→LLVM translator used to gener-
ate LLVM’s bitcode, which is fed as an input to the Target-Aware Optimizer.

A critical aspect of the PAO/TAO interaction is the PAO’s use of the TAO as an oracle for feedback
on the performance of potential code transformations. The PAO produces Sage IR for synthetic
functions, which represent transformed versions of selected user code fragments for which the
PAO needs cost estimates (see 5.3.5). Here too a translation to LLVM’s IR is needed by the TAO. The
PACE-cc translator also implements this translation (Path 2 in Figure 5.2).

8.2 Functionality

8.2.1 Input

The translator is invoked in two distinct situations: as part of the full compilation path or the LLVM

backend path (see § 3.4), and as part of a PAO-to-TAO query. In the first case, illustrated by Path 1
in Figure 5.2, the compiler driver invokes the translator, after the driver has invoked the PAO and
before it invokes the TAO. The input to the translator along Path 1 is an AST in SAGE III IR with
auxiliary information, and compiler directives passed by the compiler driver. These directives in-
clude optimization directives, some of which are generated by the PAO and instruct and constrain
the TAO in its code transformations (see 5.2.2). The auxiliary information includes profile data,
and information about aliases and dependences. To aid in vectorization, the auxiliary information

Principal Contacts For This Chapter: Philippe Charles, pgc1@rice.edu, and Michael Burke, mbg2@rice.edu

79

80 CHAPTER 8. THE ROSE TO LLVM TRANSLATOR

may include alignment information and sets of memory accesses (bundles). See Appendix A for a
detailed description of the auxiliary information needed for vectorization.

In the second case, illustrated by Path 2 in Figure 5.2, the PAO invokes the translator and pro-
vides it with an AST in SAGE III IR form for the synthetic function that it has created for the query.
Auxiliary information accompanies the AST, as in the first case. On this path, the PAO invokes the
translator and the TAO.

8.2.2 Output

PACE-cc produces as output, along Path 1, the LLVM IR that corresponds to the input AST, along
with LLVM metadata that provides links to the SAGE III IR auxiliary information described above. In
that the PAO and the TAO will share a single address space, PACE-cc will give the TAO access to the
SAGE III IR auxiliary information by constructing a global table of pointers to it and passing table
indices to the TAO by means of the LLVM metadata facility.

PACE-cc produces as output, along Path 2, the LLVM IR that corresponds to the input AST for
the synthetic function, along with LLVM metadata that provides links to the SAGE III IR auxiliary
information described above. Once again, the communication between the PAO and the TAO will
be facilitated by constructing a global table of pointers to the SAGE III IR auxiliary information and
passing table indices to the TAO by means of the LLVM metadata facility.

8.3 Method

To perform a translation, PACE-cc makes two passes over the SAGE III IR with Pre/Post-order visitor
patterns provided by Rose.

In the first pass, the translator generates attributes, associated with AST nodes, as part of the
analysis necessary for mapping C constructs into LLVM constructs. Attributes are added to the
AST to process global declarations and constants; map the C types into corresponding LLVM types;
process local declarations; generate temporaries and labels.

In the second pass, LLVM code is generated. Each RPU is mapped into an LLVM module. First,
global variables are processed, followed by aggregate types and function headers. Finally, code is
generated for each function body in turn.

Due to incomplete (and in some cases, incorrect) semantic processing in the Rose compiler
or semantic differences between C and LLVM, additional semantic analyses must be performed in
PACE-cc. LLVM, unlike C, is strongly typed. All these semantic issues are resolved in the first pass of
the translator using the SAGE III IR persistent attribute mechanism, without transforming the AST.

For example, instead of supporting a type for Boolean values, C uses the integer type to repre-
sent them. Boolean values often occur in a SAGE III IR representation, for example, as the result of
an intermediate comparison operation. In the SAGE III IR, these Boolean values are represented as
integers. LLVM has a bit type to represent Boolean values. The translator has to extend the SAGE III

IR AST (with attributes) to include the proper casting between integer and bit values.
The Rose compiler’s semantic processing of pointer subtraction is incorrect. The subtraction

of two pointers yields a pointer value instead of an integer value. The translator corrects this error
with the persistent attribute mechanism. Other issues of type include:

• The sizeof operator, whose value is not always correctly computed in the Rose compiler and
not provided at all for structure types.

• Structure storage mapping.

• Integer (integral) promotion/demotion is not performed for op= operation on integer types.

For a given RPU input file, the SAGE III IR AST constructed by Rose is a complete representation
of the file after preprocessing expansion. To avoid code bloat, including code duplication, we do

8.4. EXAMPLE 81

not generate code for extraneous program fragments that are imported from header files by the C

preprocessor but are not relevant to the file being translated.
Thus, translation requires more than a simple pass over the AST. However, the SAGE III IR sup-

ports two traversal modes, both of which use the Pre/Post-order visitor pattern. Using these two
traversals, PACE-cc can achieve the desired effect. We start with a complete traversal of the main
input files. A function traverseInputFiles(SgProject *) traverses only AST components whose def-
inition originated from a main (.c) input source file. While processing the elements in the main
input files, we record the external elements, defined in imported header files, on which they de-
pend. A function traverse(SgNode *) is given an arbitrary starting node in the AST and will traverse
the subtree rooted at the node in question. After traversal of the main input files, we traverse the
recorded external elements, and record the imported elements on which they depend. This pro-
cess continues until there are no remaining imported elements.

Hence, a pass over the SAGE III IR AST consists of an initial call to traverseInputFiles(SgProject
*) to process the elements in each main input file, followed by invocations to traverse(SgNode *)
to import the needed elements defined in imported header files. These are the elements that the
main file depends on, directly or indirectly.

To further avoid traversing duplicate AST representations emitted by the Rose compiler for cer-
tain features, we add a facility for short-circuiting a traversal at a given node during a visit.

8.4 Example

Consider the following C program:

int add(int x, int y) { return x + y; }

int main(int argc, char *argv[]) {

int x = 5,

y = 6,

z = add(x, y);

printf("z = %i\n", z);

}

This program consists of a main program and a local function add. In addition to some basic
declarations and initializations, the main program contains a call to add and accesses two global
entities: the external function printf and the string constant "z = %i\n". PACE-cc begins the
translation of this C file with the following LLVM declarations for the global entities:

@"\01LC0" = internal constant [8 x i8] c"z = %i\0A\00"

declare i32 @printf(...)

82 CHAPTER 8. THE ROSE TO LLVM TRANSLATOR

The LLVM code generated by PACE-cc for the add function is:

define i32 @add(i32 %x, i32 %y) nounwind {

.entry:

%.retval = alloca i32, align 4 ; storage for return value

%x.addr = alloca i32, align 4 ; parameter x

%y.addr = alloca i32, align 4 ; parameter y

store i32 %x, i32* %x.addr ; store value of parm x in mutable copy of x

store i32 %y, i32* %y.addr ; store value of parm y in mutable copy of y

%.tmp0 = load i32* %x.addr ; load x

%.tmp1 = load i32* %y.addr ; load y

%.add2 = add i32 %.tmp0, %.tmp1 ; x + y

store i32 %.add2, i32* %.retval ; store (x + y) in the return value

%.tmp8 = load i32* %.retval ; load return value

ret i32 %.tmp8 ; return the return value

}

The LLVM code generated by PACE-cc for the main function is:

define i32 @main(i32 %argc, i8** %argv) nounwind {

.entry:

%.retval = alloca i32, align 4 ; storage for return value

%argc.addr = alloca i32, align 4 ; parameter argc

%argv.addr = alloca i8**, align 4 ; parameter argv

%x = alloca i32, align 4 ; int x

%y = alloca i32, align 4 ; int y

%z = alloca i32, align 4 ; int z

store i32 %argc, i32* %argc.addr ; store value of argc in mutable copy of argc

store i8** %argv, i8*** %argv.addr ; store value of argv in mutable copy of argv

store i32 5, i32* %x ; initialize x to 5

store i32 6, i32* %y ; initialize y to 6

%.tmp3 = load i32* %x ; load x

%.tmp4 = load i32* %y ; load y

%.call5 = call i32 (i32, i32)* @add(i32 %.tmp3, i32 %.tmp4) ; add(x, y)

store i32 %.call5, i32* %z ; z = add(x, y)

%.tmp6 = load i32* %z ; load z

%.call7 = call i32 (...)* ; call printf(..., z)

@printf(i8 * getelementptr ([8 x i8]* @"\01LC0", i32 0, i32 0), i32 %.tmp6)

store i32 0, i32* %.retval ; store return value of 0

%.tmp9 = load i32* %.retval ; load return value;

ret i32 %.tmp9 ; return the return value

}

Note that the code generated for these two functions has a similar structure: a header statement
similar to the C header statement; a variable declaration to hold the return value of the function (if
needed); declarations of mutable local variables for the formal parameters (if any); declarations
for user-declared local variables (if any); code generated to initialize the local variables associated
with the parameters (if any); initialization code generated for user-defined local variables (if any);
code generated for each executable statement in the body of the function.

Chapter 9

The PACE Target-Aware Optimizer

The Target-Aware Optimizer (TAO) is a major component of the PACE compiler. The
TAO tailors application code to the target system in two different ways. It optimizes the
code to better match the microarchitectural details of the target system’s processors,
as revealed by the PACE system’s resource-characterization tools. It also optimizes the
code to better match the capabilities of the native compiler that will be used to produce
executable code. The TAO has one other use: the Platform-Aware Optimizer (PAO) can
invoke the TAO to obtain information about how a specific segment of code will trans-
late onto the target processor.

9.1 Introduction

The PACE compiler includes three major optimization tools: the Application-Aware Partitioner
(AAP), the Platform-Aware Optimizer (PAO), and the Target-Aware Optimizer (TAO). Figure 1.2
describes the relationships between these three tools as well as the relationships between the TAO

and other parts of the PACE system, such as the Resource Characterization tool (RC), the Runtime
System (RTS), and the Machine Learning tool (ML). This chapter describes the functionality and
design of the TAO, along with its interfaces to the rest of the tools in the PACE system. The TAO

builds upon the open-source LLVM compilation system.

9.1.1 Motivation

Target-aware optimization sits between the PAO and the black-box interfaces of the vendor compil-
ers through which the PAO sees the underlying hardware system on both the full compilation path
and the LLVM backend compilation path. The TAO generates versions of the PAO-transformed ap-
plication source code tailored to individual compilers and processors. To accomplish this task, the
TAO must consider performance at a near-assembly level of abstraction, perform resource-aware
optimization, and then either map the results of that optimization back into source code for the
vendor compilers or invoke an LLVM backend. Key aspects of the TAO include:

Resource-specific Tailoring The TAO uses knowledge from resource characterization to tailor
the code for specific targets. For example, the RC might discover the relative costs of a variety of
operations, including addition, multiplication, division, load, store, and multiply-add. The TAO

should rely on this information when performing operator strength reduction [2, 28] and algebraic
reassociation [15, 23].

Target-specific Improvement The TAO uses compiler-characterization knowledge to optimize
the code to both take advantage of strengths and compensate for weaknesses in vendor compilers.

Principal Contacts For This Chapter: Linda Torczon, linda@rice.edu

83

84 CHAPTER 9. THE PACE TARGET-AWARE OPTIMIZER

Resource
Characteristics

-

Compiler
Characteristics

-

Optimization
Directives

HHH
HHH

HHj

Other
Auxiliary

Information
Z
Z
Z
ZZ~

LLVM IR

?

PAO–TAO query
mechanism
�

�
�
�	�
�
�
��

�

�

�

�
Target-Aware Optimizer

�
�
�
�	

C code
@
@
@
@R

Optimized

LLVM IR�
�

�

Native

Compiler

�
�

�

LLVM

Backend

Figure 9.1: Target-Aware Optimizer Interfaces

For example, if characterization shows that a vendor compiler does a poor job of optimizing array
address expressions, the TAO might emit low-level, pointer-style C code and optimize accordingly.
If the vendor compiler can use a multiply-add operation, that fact should change the expression
shapes generated by algebraic reassociation [15, 23]. Similarly, operator strength reduction should
change its behavior based on the availability of addressing modes and autoincrement or decre-
ment.

Novel Optimizations The TAO provides a location where we can insert new optimizations into
the toolchain without modifying the vendor compilers. For example, we have already built a tree-
height restructuring pass that reorders chains of arithmetic operations to expose additional ILP [29].
Inserting this optimization into the TAO made it uniformly available across all PACE supported tar-
gets through both the full compilation path and the LLVM backend compilation path.

Evaluation for the PAO The TAO lowers the code to a near-assembly level, where the mapping
between specific code segments and the target hardware (as seen through the vendor compiler)
is more visible. Thus, the TAO has a clearer picture of the match or mismatch between decisions
made in the PAO and the target hardware. For example, the TAO can provide direct feedback to the
PAO on register pressure or available ILP based on either introspective measurement of optimiza-
tion effectiveness or evaluation of a model. That feedback should improve the PAO’s ability to tailor
its transformations to the target hardware.

9.2 Functionality

The TAO takes as input an optimized, annotated code fragment represented in the LLVM interme-
diate representation (LLVM IR), which is produced by the PAO and the ROSE-to-LLVM translator;
system-characterization, compiler-characterization, and configuration information provided by
the PACE RC; optimization directives provided by the PAO and the ML; and queries from the PAO.
The TAO operates in two distinct modes: it is invoked by the compiler driver to produce optimized
code from the output of the PAO, and it is invoked by the PAO as an oracle to obtain information
about various properties of transformed code fragments produced by the PAO. As shown in Fig-

9.3. METHOD 85

ure 3.2 and described in the “Target-Aware Optimizer” section on page 30, the TAO supports three
distinct execution paths: an LLVM IR to assembly code translation on machines where the underly-
ing LLVM compiler has a native backend, an LLVM IR to C translation, and a PAO query and response
path.

9.2.1 Interfaces

Figure 9.1 shows the interfaces supported by the TAO. The TAO takes, as its primary input, a code
fragment represented in the LLVM intermediate representation (LLVM IR). Auxiliary information
may be tied to that LLVM IR fragment, including analysis results from the PAO and runtime perfor-
mance information from the RTS. When invoked by the compiler driver, the TAO receives as input:
the LLVM IR, metadata associated with the IR, and optimization directives produced by the PAO

and/or the ML components. In this mode it operates as a compiler and produces, as its primary
output, a translated version of the LLVM IR code fragment, expressed in either C code for a specific
native compiler or as optimized LLVM IR for an LLVM backend. When invoked by the PAO, the TAO

operates as an oracle and produces, as its primary output, a data structure containing responses to
PAO queries. More detailed descriptions of the PAO–TAO query interface can be found in § 5.3.5 and
§ 9.3.4.

The TAO consumes resource- and compiler-characterization information produced by the PACE

RC. It uses resource characteristics, defined as performance-related properties of the target system,
to change the behavior of optimizations that it applies to the code being compiled. The TAO uses
compiler characteristics, defined as properties related to the effectiveness of the native compiler,
to change the shape of the C code that it generates for the native compiler. The TAO also relies on
information from the configuration file for the target platform, which is provided by the system in-
staller. (See § 3.2.2 for details.) The interface for information provided by the RC is described in
§ 2.3.2.

To produce C code, the TAO uses the C backend interface in LLVM (/lib/Target/CBackend). The
LLVM open source development team produced the C backend; we will modify this interface so
that it adapts its behavior to the properties of the native compiler, as recorded in the compiler-
characterization information gathered by the PACE system.

9.3 Method

The following sections describe the PACE approach to four aspects of the TAO design: optimization
in LLVM, vectorization, selecting optimization sequences, and producing answers to PAO queries.

9.3.1 Optimization in LLVM

When invoked by the compiler driver, the TAO is presented with user code expressed as one or
more LLVM IR procedures; when invoked by the PAO, the TAO is presented with a fragment of en-
capsulated synthetic code expressed in the LLVM IR. Under both scenarios, the TAO will apply a
sequence of optimizations to the IR form of the code; the sequence will consist of both existing op-
timizations from the LLVM framework and new optimization passes developed for the LLVM/TAO

framework as part of PACE. The specific optimizations (and possibly their order) is dictated by con-
crete optimization directives contained in the optimization plan; the TAO takes these optimization
directives as one of its inputs.

If the compiler driver directs the TAO to generate native code using an LLVM backend, the TAO

optimizes the LLVM IR and then invokes the specified LLVM backend as in a normal LLVM compi-
lation. If the compiler driver directs the TAO to generate C code, the TAO will follow optimization
by a series of passes that reshape the code for effective use by the native compiler. These trans-
formations will control the expression of the LLVM IR fragment in C. They will adjust the number

86 CHAPTER 9. THE PACE TARGET-AWARE OPTIMIZER

of simultaneously live values, the use of specific C data structures, and the forms used to express
parallel loops.

Optimization Directives Each invocation of the TAO uses optimization directives produced by
the PAO and/or the ML components (§ 5.3.7). The precise details of the optimization directives, in-
cluding what they specify and how they express that information, are the subject of ongoing discus-
sion. Our goal is for the optimization directives to be capable of expressing both specific sequences
of optimization, as in perform algebraic reassociation followed by operator strength reduction, and
high-level goals, such as optimize to minimize code and data space.

The TAO bases its processing of the application’s code on the content of the optimization di-
rectives. Those directives might, in turn, come from the ML as the distillation of prior experience.
They might come from the PAO, based on the PAO’s analysis of the code. Further, the TAO can use
compiler characteristics provided by RC, such as properties related to the effectiveness of the na-
tive compiler, as a basis for modifying compiler directives. In an extreme case, the end user might
produce distinct optimization directives to exert direct control over the TAO’s behavior.

If no optimization directives are provided, the TAO will use a generic optimization plan as its
default. Thus, the optimization directives play a critical role in adapting the compiler’s behavior
to a specific application and, to a lesser extent, to a specific target system.1 For this scheme to
work, PACE must correlate information about specific optimization plans, applications, and their
resulting performance. To simplify this process, the TAO will embed a concrete representation of
its optimization plan in the code that it produces. For more detail, see § 3.2.2.

Transformations The open-source LLVM compiler system already includes a large set of opti-
mization passes that implement a substantial set of transformations. The TAO will both build on
the existing LLVM code base and use pre-existing passes from LLVM.

1. Some LLVM passes will be used without change. For example, LLVM includes a set of passes
that eliminate “dead” code or data. While unified algorithms are available that would reduce
the internal complexity of dead code elimination in LLVM, the existing passes are functional
and effective. Since neither target-system characteristics nor application characteristics fac-
tor into dead code and data elimination, PACE will use those passes without modification.

2. Some LLVM passes will be modified to use data produced by other components in the PACE

system. Much of our work in the TAO will focus on this task. PACE produces three major
kinds of information that are of interest to the TAO: characterization information produced by
the PACE RC tool, auxiliary information passed into the TAO from the PAO, and optimization
directives as described earlier in this section.

Using Characterization Data: Figure 9.2 shows the characteristics measured by PACE in
Phase 1 that the TAO uses. Figure 9.2 also lists some of the applications for that data in
the TAO’s transformations. We will modify the existing transformations, as appropriate, to
use this data. We have begun to assess the ways that the TAO can use characterization data
in individual transformations; this assessment is an ongoing process that will continue into
Phase 2 of the project.

Using IR Auxiliary Information: In PACE, the TAO always runs after the AAP and the PAO.
This enforced order means that the TAO can rely on results from analyses performed in the
AAP and the PAO that are relevant to the TAO. The PAO will pass analysis results to the TAO as
auxiliary information to the LLVM IR; the ROSE-to-LLVM translator will map the auxiliary in-
formation to the LLVM IR while translating the ROSE IR to LLVM IR. This auxiliary information

1We anticipate that most of the application-independent target adaptation occurs as a result of resource characterization
and the use of characterization-driven optimizations.

9.3. METHOD 87

Memory System Characteristics

I-Cache Size Comparison against code size for feedback to loop unrolling

Processor Characteristics

Operations in Flight Computation of ILP for feedback to PAO, as well as input to
the query backend for scheduling

Operation Latencies Algebraic reassociation, operator strength reduction, as well
as input to the query backend for scheduling

Native Compiler Characteristics

Live values Adjusting register pressure in the C code produced by TAO,
as well as input to the query backend for register allocation
and scheduling.

Array versus Pointer Addressing Code shape decisions in the C backend

Parallel versus Sequential Loops Code shape decisions in the C backend

Speedup from Multiply-Add Code shape decisions in the C backend

Figure 9.2: PACE Phase 1 Characteristics Used by the TAO

may include aliasing information, dependence information, and runtime profile informa-
tion (derived by the RTS and mapped onto the code by the AAP and PAO). See § 5.2.2 for a
description of the auxiliary information produced by the PAO and § 8.2.2 for a description of
the mapping process.

3. Some LLVM passes will be modified to improve their effectiveness. We have begun to study
the effectiveness of optimization in LLVM with the goal of identifying weaknesses in specific
optimization passes in the existing LLVM code base. We will modify the transformations to
address those measured weaknesses, whether they are implementation issues or algorith-
mic issues. In addition, the construction of the query backend (see § 9.3.4) may necessitate
extensive modification to the register allocator and instruction scheduler.

To understand optimization effectiveness in LLVM, we have used the NULLSTONE compiler
benchmark suite2 to compare LLVM’s performance against other compilers, such as gcc and
icc. The NULLSTONE analysis has identified several weak spots. We are expanding our study
to use other benchmarks; we are using tools from the RTS to assess performance of the result-
ing code.

4. Finally, we will implement some novel transformations in LLVM. These transformations will
target specific opportunities identified by our analysis of LLVM’s effectiveness, or opportuni-
ties created by the transformations used in the PAO.3 Our preliminary studies have identified
several potential additions, including a pass that performs algebraic reassociation of expres-
sions and a value-range propagation and optimization pass. We have already built a tree-
height restructuring pass that reorders chains of arithmetic operations to expose additional
ILP [29].

2NULLSTONE is a registered trademark of the Nullstone Corporation. The NULLSTONE compiler performance suite is a
proprietary product that we are using as part of our design process to assess compiler strengths and weaknesses. We intend
to use the suite as part of our internal regression testing, as well. The NULLSTONE code is not part of PACE nor is it required
to install or use the final system.
3In practice, many optimization algorithms contain implicit assumptions about the properties of the code being compiled.
The PAO transformations will, almost certainly, create code that contains optimization opportunities that appear rarely, if
ever, in code written by humans.

88 CHAPTER 9. THE PACE TARGET-AWARE OPTIMIZER

We anticipate that this activity will involve a combination of implementing known algorithms
from the literature and inventing new algorithms. We will focus on finding effective solutions
to the underlying performance problems.

For each transformation pass included in the TAO, we will examine the question of how that pass
can use resource-characterization information, application performance data, and analytical knowl-
edge derived in the PAO. We anticipate that the results of that investigation will lead to further
improvements.

9.3.2 Vectorization

When the PAO invokes the TAO for generating short SIMD vector code, the PAO passes the TAO the
LLVM IR of a function; alignment and aliasing information, including data dependence informa-
tion; and bundle information, which describes memory accesses to consecutive memory locations,
as hints. The LLVM IR of the function contains metadata that indicates the innermost loop body that
needs to be vectorized in the TAO. This innermost loop body is made amenable to vectorization in
the PAO by using several compiler transformations such as loop peeling, loop unrolling, and loop
fusion. Such transformations preserve the validity of the data dependence information in the PAO.

The TAO performs vectorization before any other standard compiler transformation is applied.
It builds a dependence graph for each basic block of the annotated innermost loop nest using
the dependence information from PAO, and performs a dynamic-programming-based vector code
generation using bundles. The dynamic programming uses a cost-based model to determine op-
timal vector code for the input LLVM IR. Register pressure is well-integrated into the cost-based
model.

The details of how the PAO invokes the TAO and the vectorization algorithm is provided in Ap-
pendix A.

9.3.3 Selecting Optimization Sequences

Choosing which optimizations to apply is a critical part of the design process for any optimizing
compiler. In PACE, the selection of specific transformations has several components. First, the
AAP, the PAO, and the TAO address different concerns; this separation of concerns leads to some di-
vision in the set of transformations that the various tools will implement. (See § 3.5 for the division
of transformations among the AAP, the PAO, and the TAO.) Second, the PAO and ML may suggest
specific optimization directives for a given compilation. Third, the RTS will provide the compiler
with information about application performance that can inform and guide optimization decisions
in the TAO.

Finally, in the TAO, the results of the RC’s characterizing the native compiler should inform both
the selection of specific optimizations and the decisions made about how to shape the code that the
TAO generates. For example, if the TAO discovers that some inline substitution in the AAP has made
a function too long for the native compiler to handle, it can modify the AAP optimization plan so
that the parameters that govern the AAP’s decision algorithm for inlining or, perhaps, specify that
the AAP should not inline that procedure. Phase 2 will expand the the set of compiler properties
that the RC tools measure, enabling this sort of modification of the optimization plan by the TAO

(§ 2.2.3).

External Guidance The TAO accepts external guidance on optimization in the form of optimiza-
tion directives. The TAO is responsible for the optimization plan mechanism and the implemen-
tation, but not for the generation of optimization directives. Directives may be generated by the
PAO and/or the ML. In an extreme case, an end user might create a custom optimization plan to
precisely control the process. The TAO may modify compiler directives based on native compiler

9.3. METHOD 89

characteristics provided by RC.

The TAO may elect to implement some parts of its optimization plan with transformations pro-
vided in the native compiler. If compiler characterization shows, for example, that the native com-
piler has a strong redundancy elimination pass, then the TAO may omit its own redundancy elimi-
nation pass.

The TAO may also receive external guidance in the form of performance information from the
RTS, passed into the TAO from the PAO as auxiliary information to the LLVM IR form of the code. Per-
formance information can influence optimization, ranging from decisions about path frequencies
and code motion through the placement of advisory prefetch operations. As we renovate optimiza-
tions in LLVM, we will look for opportunities to apply runtime performance information to improve
code quality.

Targeting the Native Compiler A critical aspect of the TAO’s mission is to shape the optimized
source code produced for the input application so that the vendor compiler can produce efficient
code for it. The TAO derives its understanding of the strengths and weaknesses of the vendor com-
piler from the compiler-characterization results produced by the PACE RC. From the TAO perspec-
tive, those tools measure effective capacities of low-level resources available to compiled C code.
Examples include the number of simultaneously live values that the compiler can sustain without
spilling and the amount of instruction-level parallelism that it can use productively. The compiler
characterization tools also discern code shape issues that improve the performance of the code
generated by the native compiler. Examples include support for multiply-add instructions and the
performance tradeoff between array addressing expressions and pointers.

The TAO effort will explore using compiler characterization information to tailor the C code that
it generates for the native compiler. For example, if the vendor compiler can use a multiply-add
operation, that fact may change the expression shapes generated by algebraic reassociation [15,
23]. In particular, if the native compiler expects the multiply and add instructions to appear in a
particular order, the TAO will need to generate the instructions in the correct order. If compiler
characterization shows that a vendor compiler does a poor job of optimizing array address expres-
sions, the TAO might emit low-level, pointer-style C code and optimize accordingly. Similarly, op-
erator strength reduction should change its behavior based on the availability of addressing modes
and autoincrement or decrement.

9.3.4 Producing Answers to PAO Queries

When the PAO invokes the TAO as an oracle, the PAO passes the TAO a synthetic code fragment
encapsulated in a function; standard PAO–TAO auxiliary information, including profile and alias
information; and a query data structure requesting particular information. The synthetic function
will consist of a code region that contains a single loop nest, a loop body, or an entire function.

The TAO produces, as its primary output, an updated query data structure containing metric
information on the synthetic code that it would have compiled. Examples of PAO queries include
requests for an estimate of register pressure, critical-path length in a code region, or ILP. Details
related to the types of queries that the PAO will generate can be found in § 5.3.5.

When responding to queries from the PAO, the TAO may provide additional feedback to the
PAO on the effectiveness of the transformed code produced by the PAO. For example, if the TAO

scheduler detects that there is too little ILP in the PAO-provided synthetic code fragment, the TAO

will inform the PAO that there is insufficient ILP when it responds to the PAO’s original query. If the
TAO finds that register pressure is too high in a loop, it will inform the PAO; the PAO will know to
transform the code in a way that reduces the demand for registers. If the TAO identifies a loop that
would benefit from software pipelining, it will inform the PAO; the PAO may remove control flow to
support the decision to software pipeline the loop.

90 CHAPTER 9. THE PACE TARGET-AWARE OPTIMIZER

We are exploring two possible strategies for producing responses to PAO queries: a query back-
end that uses measured resource characteristics to model the target architecture and produce an-
swers to PAO queries based on the resulting code, and a low-cost scheme that estimates answers to
PAO queries without performing code generation. We will study the efficiency and accuracy of the
two approaches as well as the quality of the final code generated by the two approaches. We will use
these results to determine whether we should select a single approach or use some combination of
the two approaches to produce answers to PAO queries.

Using a Query Backend to Generate Responses When the TAO is invoked to answer specific
queries from the PAO (as described in § 5.3.5), it will optimize the code just as if it were generating
code for the synthetic functions. If the PAO does not provide optimization directives, the TAO will
use its default optimization plan to imitate the native compiler optimization. After optimization,
the TAO will invoke a generic backend designed specifically for the query synthetic function.

The query backend will use a simple RISC ISA, such as the SimpleScalar ISA, parameterized by
the system characteristics measured by the PACE RC.4 The query backend will generate code for
the ISA and directly measure characteristics of the generated code, such as the machine code size
in bytes. The query backend will also measure the code generator’s behavior in an introspective
way. (For example, the register allocator will record how much spill code it generates and the in-
struction scheduler will record the schedule density and efficiency.) These direct and introspective
measures form the basis for replies to the set of queries that the TAO supports.

Using Low-Cost Estimates to Generate Responses The prototype version of the PAO/TAO query
interface will compute the following low-cost estimates for each synthetic function: (1) MAXLIVE to
estimate register pressure; (2) SPILLCOST of the generated code; (3) critical-path length estimate;
(4) cost of SIMDizing the synthetic function. The maxlive information is combined with the RC

characteristics for the register file of the underlying architecture to determine the spillcost of the
generated code using a simple register allocation algorithm such as graph coloring. Another non-
trivial point to consider is for the native compiler to take the exact same decision of spilling as
that of TAO while generating code for the synthetic function. This involves communicating spill
decisions to the native compiler either using register attributes for non-spill variables or by moving
spilled locals to aliased memory locations.

The critical-path (CP) length estimate is an indication of the amount of instruction-level paral-
lelism available in the synthetic function. For straight-line and acyclic code regions in the synthetic
function, CP is determined using a dependency graph of the LLVM IR instructions. Each such in-
struction is associated with a cost stored in the RC. A simple depth-first traversal of the dependency
graph yields the critical-path length estimate of the synthetic function. For code regions with mul-
tiple control flow paths, we can use either of the following approaches: (1) compute critical path
length for each control flow path and weight them based on profile information; (2) control depen-
dence based critical path length estimate. Approach (1) needs accurate profile information to limit
the combinatorial explosion of the number of control flow paths.5

SIMDization is an important optimization performed in the PAO. The PAO would like to know
the cost of current high-level SIMDization performed for the synthetic function and if possible,
would like to get a feedback on any improved SIMDization using code shaping and SIMD code
selection. This analysis in the TAO requires cost estimates for various vector instructions and the
length of the vector unit from the RC unit. Our approach in the TAO is to build the data dependence
graph and perform a vector code selection algorithm based on these costs.

4We are currently exploring the feasibility of basing the query backend on LLVM’s Alpha native code generator. The Alpha
backend was designed to be compatible with the SimpleScalar simulator.
5We are still deciding on the technique for dealing with cyclic code regions and software pipelining.

9.3. METHOD 91

The above described estimates are computed in an efficient manner in terms of time and space.
The results are accumulated in a data structure and fed back to PAO when the TAO is invoked in-
core for a synthetic function.

92 CHAPTER 9. THE PACE TARGET-AWARE OPTIMIZER

Chapter 10

The PACE Runtime System

The principal role of the PACE Runtime System (RTS) is to gather performance mea-
surements of a program execution to support compile-time feedback-directed opti-
mization and online selection of parameters, such as tile sizes and scheduling policies.
At a minimum, the RTS uses an interval timer to measure time consumed in various
parts of a program. By identifying costly regions in a program, the RTS can direct the
PACE Compiler where to focus optimization. If hardware performance counters are
available, RTS uses them to gather additional information about resource consump-
tion and inefficiency; such information provides detailed insight into opportunities for
improving performance on a target platform. This information can help the PACE Com-
piler identify appropriate optimizations needed to improve performance.

10.1 Introduction

The purpose of the PACE Runtime System (RTS) is to measure the performance of program execu-
tions with three aims: to help identify important program regions worthy of intensive optimization,
to provide data to support feedback directed optimization, and to provide a harness that supports
measurement-driven online parameter selection. Here, we describe the functionality and design
of RTS, along with its interfaces to other components in the PACE system. The performance moni-
toring infrastructure of RTS builds upon Rice’s HPCTOOLKIT performance tools [59]—open-source
software for measurement and analysis of application performance.

10.1.1 Motivation

With each generation, microprocessor-based computer systems have become increasingly sophis-
ticated with the aim of delivering higher performance. With this sophistication comes behavioral
complexity. Today, nodes in microprocessor-based systems are typically equipped with one or
more multicore microprocessors. Individual processor cores support additional levels of paral-
lelism typically including pipelined execution of multiple instructions, short vector operations, and
simultaneous multithreading. In addition, microprocessors rely on deep multi-level memory hier-
archies for reducing latency and improving data bandwidth to processor cores. At the same time,
sharing at various levels in the memory hierarchy makes the behavior of that hierarchy less pre-
dictable at compile time.

As the complexity of microprocessor-based systems has increased, it has become harder for
applications to achieve a significant fraction of peak performance. Attaining high performance
requires careful management of resources at all levels. To date, the rapidly increasing complex-
ity of microprocessor-based systems has outstripped the capability of compilers to map applica-
tions onto them effectively. In addition, the memory subsystems in microprocessor-based sys-

Principal Contacts For This Chapter: John Mellor-Crummey, johnmc@rice.edu

93

94 CHAPTER 10. THE PACE RUNTIME SYSTEM

Executable
• annotated with optimization plan
• augmented with closures for online

feedback-directed parameter tuning

PACE Runtime System

Execution with online
parameter tuning ML PAO AAP

Profile
information

Characteristics
to measure

Figure 10.1: PACE Runtime System inputs and outputs.

tems are ill suited to data-intensive computations that voraciously consume data without signif-
icant spatial or temporal locality. Achieving high performance with data-intensive applications
on microprocessor-based systems is particularly difficult and often requires careful tailoring of an
application to reduce the impedance mismatch between the application’s needs and the target
platform’s capabilities.

To improve the ability of the PACE Compiler to map applications onto modern microprocessor-
based systems, the PACE RTS will collect detailed performance measurements of program execu-
tions to determine both where optimization is needed and what problems are the most important
targets for optimization. With detailed insight into an application’s performance shortcomings, the
PACE Compiler will be better equipped to select and employ optimizations that address them.

10.2 Functionality

Figure 1.2 shows the major components of the PACE system and the interfaces between them; in
that figure, the RTS components appear in blue. Figure 10.1 shows the inputs and outputs of the
PACE RTS. The RTS will provide support for guiding online and offline optimization. This support
comes in several forms:

• Runtime monitoring of metrics that can be measured using timers and/or hardware perfor-
mance counters.

• Attribution of metrics to static and dynamic program contexts.

• A framework for providing performance profile information to (1) the AAP to support applica-
tion partitioning, and (2) the machine learning tools and the PAO to support offline feedback-
directed optimization.

• A framework for runtime parameter selection based on measured metrics.

The measurement subsystem of the RTS monitors the performance of an executable in
machine-code form. There are two ways in which the measurement subsystem can be used: it
can be statically linked into an executable at program build time, or for dynamically-linked exe-
cutables, it can be pre-loaded into the application’s address space at launch time. In either case,
when the program is launched, the measurement subsystem is initialized, environment variables

10.2. FUNCTIONALITY 95

set by a measurement script are read to determine what to monitor, and then execution begins with
monitoring enabled.

10.2.1 Interfaces

There are several interfaces between the RTS and the rest of the PACE system.

• An RTS measurement script will drive application characterization by the measurement sub-
system. The script will repeatedly execute an application to survey performance metrics that
will be used to guide compilation.

• The RTS measurement subsystem will interpose itself between the application and the oper-
ating system on the target platform to intercept program launch and termination, creation
and destruction of threads and processes, setup of signal handlers, signal delivery, loading
and unloading of dynamic libraries, and MPI initialization/finalization.

• A profiler associated with the measurement subsystem will analyze binary measurement
data recorded by the measurement system and produce call tree profiles in XML form that
will be read by the Application-Aware Partitioner (§4.3.1).

• A performance analyzer associated with the PACE RTS will digest performance profile data
in XML format and provide an XML file that contains high-level quantitative and qualitative
guidance to the Platform-Aware Optimizer about resource consumption, costs, and ineffi-
ciencies.

10.2.2 Input

The components of the PACE RTS receive several kinds of inputs from other parts of the PACE sys-
tem.

Measurement script. An RTS measurement script will drive application characterization by re-
peatedly executing an application under control of the measurement subsystem to survey perfor-
mance metrics that will be used to guide compilation. Inputs to the measurement script are an
application in machine code form and a specification of a test input for the program (arguments,
input files, etc.). What characteristics to measure will be derived from the hardware counters avail-
able on the target platform. If a characteristic is to be measured using asynchronous sampling, the
RTS will choose an appropriate period for sampling the characteristic. The compiler drive provides
a default measurement script in the application’s working directory.

Online feedback-directed optimizer. The RTS will include a harness to support online feedback-
directed optimization. During compilation, the Platform-Aware Optimizer (PAO) may determine
that certain parameters may benefit from runtime optimization (Section 5.3.8). The PAO will
present the RTS with a closure that contains an initial parameter tuple, a specification of the bounds
of the parameter tuple space, a generator function for exploring the parameter tuple space, and a
parameterized version of the user’s function to invoke with the closure containing the parameter
tuple and other state.

10.2.3 Output

The RTS measurement subsystem will produce a raw profile XML document that will associate static
and/or dynamic contexts (which can include call paths, procedures, loops, and line numbers in
source files) annotated with measured values of performance metrics, including call counts. It
stores the raw profile document in an appropriate subdirectory of the application’s working direc-
tory. The RTS performance analysis subsystem will augment the raw profile XML document with

96 CHAPTER 10. THE PACE RUNTIME SYSTEM

derived metrics that provide high-level quantitative and qualitative guidance about resource con-
sumption, costs, and inefficiencies.

The RTS performance analysis subsystem will register the name of the executable, the time of
a run, and the location of the performance information produced by the RTS with the PACE Com-
piler and the PACE Machine Learning tools using callbacks provided by each of these subsystems.
Within the PACE Compiler, call tree profiles collected by RTS are used by the Application-Aware
Partitioner to guide the process of creating refactored program units (§4.3.1). RTS performance
profiles will also be used by the Application-Aware Partitioner (§ 4.6.9) and Platform-Aware Opti-
mizer (§ 5.3.9) to support feedback-directed changes to the application’s optimization to improve
memory hierarchy utilization by adjusting data layouts (e.g. adding inter-variable or intra-variable
padding; transposing arrays) and adjusting the code shape as necessary.

10.3 Methods

10.3.1 Measurement

The PACE Runtime System must accurately measure and attribute the performance of fully op-
timized applications. It is important to have an accurate measurement approach that simulta-
neously exposes low-level execution details while avoiding systematic measurement error, either
through large overheads or through systematic dilation of execution. For this reason, the PACE

RTS will build upon Rice’s HPCTOOLKIT performance tools [59] as the basis of its measurement
subsystem. The measurement subsystem will record profiles in a collection of files in a compact
binary form that associates metric values with the static and/or dynamic contexts (identified by
machine-code addresses) where the metrics were measured. Below, we outline the methods used
for measuring application performance.

Asynchronous sampling. HPCTOOLKIT primarily uses asynchronous sampling rather than in-
strumentation to measure performance. Asynchronous sampling uses a recurring event trigger
to send signals to the program being profiled. When the event trigger occurs, a signal is sent to
the program. A signal handler then records the context where the sample occurred. The recur-
ring nature of the event trigger means that the program counter is sampled many times, resulting
in a histogram of program contexts. Asynchronous sampling can measure and attribute detailed
performance information at a fine grain accurately as long as (1) code segments are executed re-
peatedly, (2) the execution is sufficiently long to collect a large number of samples, and (3) the
sampling frequency is uncorrelated with a thread’s behavior. Under these conditions, the distribu-
tion of samples is expected to approximate the true distribution of the costs that the event triggers
are intended to measure.

Event triggers. Different kinds of event triggers measure different aspects of program perfor-
mance. Event triggers can be either asynchronous or synchronous. Asynchronous triggers are
not initiated by direct program action. HPCTOOLKIT initiates asynchronous samples using either
an interval timer or hardware performance counter events. Hardware performance counters en-
able HPCTOOLKIT to statistically profile events such as cache misses and issue-stall cycles. Syn-
chronous triggers, on the other hand, are generated via direct program action. One example of an
interesting event for synchronous profiling is lock acquisition; one can measure the time per call
to look for lock contention.

Call path profiling. Experience has shown that comprehensive performance analysis of modern
modular software requires information about the full calling context in which costs are incurred.
The calling context for a sample event is the set of procedure frames active on the call stack at the
time the event trigger fires. We refer to the process of monitoring an execution to record the calling

10.3. METHODS 97

contexts in which event triggers fire as call path profiling.

When synchronous or asynchronous events occur, the measurement subsystem records the
full calling context for each event. A calling context is a list of instruction pointers, one for each
procedure frame active at the time the event occurred. The first instruction pointer in the list is
the program address at which the event occurred. The rest of the list contains the return address
for each active procedure frame. Rather than storing the call path independently for each sample
event, we represent all of the call paths for events as a calling context tree (CCT) [5]. In a calling
context tree, the path from the root of the tree to a node corresponds to a distinct call path observed
during execution; a count at each node in the tree indicates the number of times that the path to
that node was sampled.

Exposing calling patterns. Besides knowing the full calling context for each sample event, it is
useful to know how many unique calls are represented by the samples recorded in a calling context
tree. This information enables a developer interpreting a profile to determine whether a procedure
in which many samples were taken was doing a lot of work in a few calls or a little work in each of
many calls. This knowledge in turn determines where optimizations should be sought: in a func-
tion itself or its call chain. To collect edge frequency counts, we increment an edge traversal count
as the program returns from each stack frame active when a sample event occurred. We do this by
having the trampoline function increment a ”return count” for the procedure frame marked by the
sentinel as it returns. A detailed description of this strategy can be found in our prior work [35].

Copingwith fully optimized binaries. Collecting a call path profile requires capturing the calling
context for each sample event. To capture the calling context for a sample event, the measurement
must be able to unwind the call stack at any point in a program’s execution. Obtaining the return
address for a procedure frame that does not use a frame pointer is challenging since the frame may
dynamically grow (space is reserved for the caller’s registers and local variables; the frame is ex-
tended with calls to alloca; arguments to called procedures are pushed) and shrink (space for the
aforementioned purposes is deallocated) as the procedure executes. To cope with this situation,
we developed a fast, on-the-fly binary analyzer that examines a routine’s machine instructions and
computes how to unwind a stack frame for the procedure [66]. For each address in the routine,
there must be a recipe for how to unwind the call stack. Different recipes may be needed for differ-
ent intervals of addresses within the routine. Each interval ends in an instruction that changes the
state of the routine’s stack frame. Each recipe describes (1) where to find the current frame’s re-
turn address, (2) how to recover the value of the stack pointer for the caller’s frame, and (3) how to
recover the value that the base pointer register had in the caller’s frame. Once we compute unwind
recipes for all intervals in a routine, we memoize them for later reuse.

To apply our binary analysis to compute unwind recipes, we must know where each routine
starts and ends. When working with applications, one often encounters partially stripped libraries
or executables that are missing information about function boundaries. To address this prob-
lem, we developed a binary analyzer that infers routine boundaries by noting instructions that are
reached by call instructions or instructions following unconditional control transfers (jumps and
returns) that are not reachable by conditional control flow.

HPCTOOLKIT ’s use of binary analysis for call stack unwinding has proven to be very effective,
even for fully optimized code [66]. At present, HPCTOOLKIT provides binary analysis for stack un-
winding on the x86 64, Power, and MIPS architectures. On architectures for which HPCTOOLKIT

lacks a binary analyzer for call stack unwinding, where available we will use libunwind [53], a
multi-platform unwinder that uses information recorded by compilers to unwind the call stack.
libunwind currently supports ARM, IA64, x86, x86 64, MIPS, and PowerPC architectures.

98 CHAPTER 10. THE PACE RUNTIME SYSTEM

Flat profiling. On some platforms, support for call stack unwinding might not be available. On
these platforms, the measurement subsystem will use simpler profiling strategy and collect only
program counter histograms without any information about calling context. This form of profiling
is referred to as flat profiling. Even such simple profiling can quantitatively associate costs with
program regions, which can serve to guide a compiler as to where optimization is most important.

Maintaining control over parallel applications. To manage profiling of an executable, HPC-
TOOLKIT intercepts certain process control routines including those used to coordinate thread-
/process creation and destruction, signal handling, dynamic loading, and MPI initialization/final-
ization. To support measurement of unmodified, dynamically linked, optimized application bi-
naries, HPCTOOLKIT uses the library preloading feature of modern dynamic loaders to preload a
profiling library as an application is launched. With library preloading, process control routines
defined by HPCTOOLKIT are called instead of their default implementations. For statically linked
executables, HPCTOOLKIT provides a script that arranges to intercept process control routines at
link time by using linker wrapping—a strategy supported by modern linkers.

Handling dynamic loading. Modern operating systems such as Linux enable programs to load
and unload shared libraries at run time, a process known as dynamic loading. Dynamic loading
presents the possibility that multiple functions may be mapped to the same address at different
times during a program’s execution. During execution, the measurement subsystem ensures that
all measurements are attributed to the proper routine in such cases by dividing an execution into
intervals during which no two load modules map to overlapping regions of the address space.

10.3.2 Profile Analysis

For measurements to be useful, they must be correlated with important source code abstractions.
Profiles collected by the measurement subsystem will be digested by hpcprof, a tool that will cor-
relates measured metrics with static and dynamic contexts at the source code level. hpcprof pro-
duces a profile XML document that associates static and/or dynamic contexts (which can include
call chains, procedures, loops, and line numbers in source files) annotated with measured metric
values. Here, we briefly outline the methods used by hpcprof to correlate profile data with static
and dynamic application contexts.

Correlating performancemetrics with optimized code Measurements are made with reference
to instruction addresses in executables and shared libraries; it is necessary to map measurements
back to the program source for them to be of much use. To associate sample-based performance
measurements with the static structure of fully optimized binaries, we need a mapping between
object code and its associated source code structure. HPCTOOLKIT’s hpcstruct constructs this
mapping using binary analysis; we call this process recovering program structure.

hpcstruct focuses its efforts on recovering procedures and loop nests, the most important el-
ements of source code structure. To recover program structure, hpcstruct parses a load mod-
ule’s machine instructions, reconstructs a control flow graph, combines line map information with
interval analysis on the control flow graph in a way that enables it to identify transformations to
procedures such as inlining and account for transformations to loops [66].1

Several benefits naturally accrue from this approach. First, HPCTOOLKIT can expose the struc-
ture of and assign metrics to what is actually executed, even if source code is unavailable. For
example, hpcstruct’s program structure naturally reveals transformations such as loop fusion
and scalarized loops implementing Fortran 90 array notation. Similarly, it exposes calls to com-
piler support routines and wait loops in communication libraries of which one would otherwise

1Without line map information, hpcstruct can still identify procedures and loops, but is not able to account for inlining or
loop transformations.

10.3. METHODS 99

be unaware. hpcstruct’s function discovery heuristics expose distinct logical procedures within
stripped binaries.

Identifying scalability bottlenecks inparallel programs By using differential analysis of call path
profiles collected by the measurement subsystem, the RTS will pinpoint and quantify scalability
bottlenecks in SPMD parallel programs [22, 68]. Using a technique we call blame shifting, one
can attribute precise measures of lock contention, parallel idleness, and parallel overhead in mul-
tithreaded programs [65, 67]. Combining call path profiles with program structure information,
HPCTOOLKIT can quantify these losses and attribute them to the full calling context in which they
occur.

10.3.3 AnalyzingMeasurements to Guide Feedback-directed Optimization

Identifying performance problems and opportunities for tuning often requires synthesizing per-
formance metrics from two or more hardware performance counters. In general, our plan is to
calculate and attribute wasted cycles associated with various features in a program.

We can measure or estimate exposed memory latency from hardware performance counters.
Using instruction-based sampling support in AMD Opterons [32], one can measure the memory
latency observed by an instruction directly. On systems that support only event-based sampling,
we plan to estimate memory latency by multiplying numbers of cache misses at each level by their
measured latency. When hardware counters permit, we plan to estimate exposed memory latency
by combining measurements of total latency with measures of memory parallelism made with
other hardware counters. We plan to measure and attribute the cost of pipeline stalls due to integer
operations, floating point operations, and mispredicted branches. We will estimate total delay due
to mispredicted branches in each context by multiplying the number of mispredicted branches by
the delay each one causes. We will also compute instruction balance measures that will show the
ratios of memory accesses, integer operations, branches, and floating point operations.

These metrics will highlight opportunities for improving efficiency that can be targeted by
feedback-directed optimization in the PACE Platform-Aware Optimizer.

10.3.4 Online Feedback-directed Parameter Selection

The RTS will provide a harness to be used for online feedback-directed parameter selection. This
harness can be used to select parameter settings for tilings and select among code variants. As in-
put to this harness, the PACE Platform-Aware Optimizer will provide a closure (§5.3.8) that includes
the following information:

• A function that represents a parameterized region of application code. This code takes as
input the closure.

• A parameter tuple that represents the current parameter setting. Initially, this tuple will con-
tain the PAO’s best estimate of the optimal parameter settings.

• The bounds of the parameter tuple space that needs to be searched.

• A generator function that takes as inputs (1) the current parameter tuple, (2) a map from
parameter tuples to a vector of metrics that represent observed performance, and (3) the
bounds of the parameter tuple space. The generator function will return the next parameter
tuple, which may be the same as the current parameter tuple.

• A set of performance metrics that will be used to assess the goodness of a particular param-
eterization of a code region. Metrics may include time and perhaps hardware performance
counter measures.

100 CHAPTER 10. THE PACE RUNTIME SYSTEM

• Inputs other than the parameter tuple needed by the region of parameterized code.

• A flag that indicating whether or not this is the first use of this closure.

• A map between parameter tuples and runtime performance metrics. This map may be ini-
tially empty, or it may be partially filled in with information from the knowledge base.

The RTS will provide a harness for online feedback-directed optimization that uses this closure
in the following way. If this is not the first invocation of the harness, the generator function will be
invoked with the current parameter tuple and a map from tuples to a vector of measured metrics.
The generator function will determine the next parameter tuple to try if the current parameter tuple
is not satisfactory. The harness will arrange to measure the performance metrics specified. The
harness will then call the parameterized application code using the current parameter tuple. The
measured performance metrics for this tuple will be added to a map of tuples to metric vectors.

We expect to code a standard library of generator functions. Some generator functions may
be as simple as an exhaustive search of the parameter space. Others may perform a sophisticated
exploration of the parameter space using algorithms such as direct search, hill climbing, or other
optimization techniques. In our design, the nature of the generator functions and the representa-
tion for a parameter tuple is of no consequence to the RTS harness, which merely needs to be able to
invoke the provided components in the aforementioned manner. For that reason, we expect to use
the same harness to perform online feedback-directed optimization for a multiplicity of purposes,
including selection of tiling and scheduling parameters.

Results of the online feedback-directed optimization will be recorded in the application’s work-
ing directory, where they will be accessible by the PACE Machine Learning tools to help improve
both the initial parameter tuple and the parameter spaces suggested by the PAO, and accessible by
the compiler to improve its subsequent optimizations of the same code.

10.4 Results

The core of the PACE RTS measurement subsystem based on HPCTOOLKIT is operational. Call path
profiling using binary analysis is supported on Linux systems based on x86 64, Power32, Power64,
and MIPS processors. Using libunwind, the measurement subsystem will soon support call path
profiling on ARM, IA64, x86 processors. The HPCTOOLKIT-based measurement infrastructure uses
the PAPI library for hardware performance counter measurements. On older Linux kernels, PAPI
is supported using either the Perfmon2 or Perfctr kernel patches. As of Linux kernel 2.6.32, PAPI
uses the built-in perf events drivers, which are enabled by default.

The measurement subsystem can collect performance profiles for timer and hardware perfor-
mance counter events. hpcprof digests profiles from the measurement subsystem and assembles
them into a profile XML document. The PACE Application-Aware Partitioner reads call tree profile
XML documents produced by hpcprof and uses them to construct refactored program units.

Chapter 11

Machine Learning in PACE

11.1 Introduction - Machine Learning for Compiler Optimization

11.1.1 Motivation

The central objective of the PACE project, which is to provide portable performance across a wide
range of new and old systems, and to reduce the time required to produce high-quality compilers
for new computer systems, can greatly be helped by machine learning.

As an example, consider a problem in the PACE context: Given a program, a target system and
a compiler, predict a good compiler configuration, such as a list of compiler flag settings which
yields fast execution for the program. We shall refer to this problem as the “flag-setting problem”.
The selection of optimizations is part of the PACE compiler optimization plan; in particular, the
generation of optimization directives (§ 3.2.3). The selection of optimizations that yields fast ex-
ecution (optimum performance, in general) depends on the characteristics of the target system,
the characteristics of the program being compiled, and the characteristics of the compiler. The re-
lationship between the flag settings and the performance can be viewed as a relationship among
points in a multidimensional space, spanned by the variables which characterize the program be-
ing compiled, the target system, the compiler flag settings and the performance.

To address this problem, a human designer uses past experience by remembering and apply-
ing a list of compiler flag settings used for similar programs encountered before; or by constructing
a good list of settings based on trial runs of the program of interest. Thus the success of the de-
signer depends on the ability to remember past experience, on the ability to distill, abstract, and
generalize knowledge from past experience, and on the ability to spot patterns in the complex mul-
tidimensional space of non-linear interactions. This, in itself, is a formidable task. Furthermore, all
this experience and knowledge might become irrelevant if the target system changes, and it would
involve massive effort to re-acquire the relevant knowledge to be able to use the compiler effec-
tively in a new target system. This is the central problem that the PACE project seeks to remedy.
To remedy this problem, automation is needed to effectively and efficiently characterize the plat-
form interactions: the interactions between programs, target systems, and compilers and use this
characterization to optimize these interactions.

Machine learning aims to develop models of such complex relationships by learning from avail-
able data (past experience or from controlled experiments). The learned models facilitate discov-
ery of complex patterns and recognition of patterns of known characteristics, in huge, unorganized
high-dimensional parameter spaces, thereby making optimization tasks tractable and aiding in in-
telligent decision making.

The machine learning group of the PACE effort is concerned with developing techniques to

Principal Contacts For This Chapter: Erzsébet Merényi, erzsebet@rice.edu, Krishna V. Palem, palem@rice.edu, and
Lakshmi N. B. Chakrapani, chakra@rice.edu

101

102 CHAPTER 11. MACHINE LEARNING IN PACE

learn from the complex multidimensional data spaces that characterize the often non-linear inter-
actions between programs, target system, and compiler optimizations. The result of the learning—
the knowledge, captured in learned models of relevant optimization scenarios—can then be de-
ployed and used in a variety of PACE related tasks such as compile-time program optimization (for
speed, for memory usage, etc.), or for resource characterization. Moreover, with certain machine
learning techniques, the models deployed after initial satisfactory off-line training could learn con-
tinuously in a run-time environment. This not only enables their use as oracles but allows ongoing
improvement of their knowledge based on run-time feedback about optimization success.

11.1.2 PriorWork

Machine learning for compiler optimization is a relatively new area, with much unexplored terri-
tory. The following is a summary of what has been accomplished in the past ten years, showing
some demonstrable but not dramatic performance improvements. This leaves significant oppor-
tunities for further advances in this area. Prior work can roughly be divided into two categories,
machine learning for optimization and machine learning to characterize platform interactions.

Machine learning for compiler optimization

Stephenson et al. use genetic programming (genetic algorithms applied specifically to programs)
to determine priority functions used in compiler optimizations [64]. Priority functions are used ex-
tensively in compiler optimization heuristics. For example, in instruction scheduling algorithms,
priority functions are used to assign priorities to instructions which in turn determine the instruc-
tion schedule (in general, the order of resource allocation.) When compared to hand-tuned priority
functions used in the Trimaran compiler, a program-specific priority function for hyperblock for-
mation yields an average improvement of about 25% in running time for the SpecInt, SpecFP, and
Mediabench benchmark suites. A program agnostic priority function yields about 9% improve-
ment on the average. Further discussion on the applicability of genetic algorithms to compiler
optimization can be found in § 11.3.3. Cavazos et al. have used logistic regression, which is a tech-
nique to compute statistical correlation, to determine method-specific optimization settings [20] in
Jikes RVM for a set of benchmarks drawn from SPECjvm, SPECjbb and DaCapo suites. The authors
report improvements in execution time ranging from an average of 4% over−O0 optimization level
with a corresponding improvement of 5% in total running time (the sum of the program execution
time and the JVM), to a 29% (and 0%) improvement over−O2.

A similar approach has been used for the SPEC 95 FP, SPEC 2000 FP and INT, Polyhedron 2005,
and MiBench benchmarks in the EKOPath compiler [19]. Average improvement of 17% in running
time over all benchmarks over -Ofast setting (the highest optimization setting in the EKOPath com-
piler) has been reported. Agakov et al. construct Markov models to predict the effectiveness of op-
timizations and use this to inform an iterative search to determine good optimization sequences.
This approach yields about 33% improvement in running time on a TI processor, after 5 rounds
of searching whereas random search yields only about 32% improvement even after 50 rounds of
searching.

Machine learning to characterize platform interactions

Cooper et al. and Almagor et al. [24, 4] characterized the space of compiler optimizations and its
impact on the performance. The authors report that randomly evaluating 4 neighbors (the 4 most
similar sequences) of a given optimization sequence yields more than 75% probability of finding a
better optimization sequence. Furthermore, 13% of local minima are within 2% of the best possi-
ble performance and about 80% of local minima are between 2% and 2.6% of the best possible per-
formance, making descent algorithms with random restarts an ideal candidate to search for good

11.2. FUNCTIONALITY 103

optimization sequences. Joshi et al. attempt to use target system independent metrics to group
similar programs from a benchmark suite [42]. The aim is to determine a representative subset of
programs.

The reader is referred to “Survey of Machine Learning for Compilers” by the PACE machine
learning group in the Rice PACE repository for a more thorough survey and comments on the
strengths and weaknesses of each of these works.

The need for further development

This surveyed body of work demonstrates that machine learning can be successfully used to spe-
cialize compilers to new architectures (by tuning priority functions, for example). Though perfor-
mance improvements have been reported, the effectiveness of machine learning itself has not been
documented in most cases. For example, in the context of compiler optimization [19], it is not clear
whether performance improvements arise from good decisions made by effective learning or from
choosing randomly from a list of pre-filtered flag settings known to yield good performance. Joshi
et al. achieve poor results in platform characterization. For example, representative programs (as
determined by their technique) have an average cache miss rate which is about 40% more than
the average cache miss rate of the entire benchmark suite. Thus further development is needed
to (1) separate and quantify the effectiveness of the learning process itself and (2) to adopt more
sophisticated machine learning techniques with the aim of effecting more dramatic performance
increase in compiler optimizations.

11.2 Functionality

11.2.1 What Machine LearningWill AccomplishInterface of Machine Learning Engines with PACE Subsystems

ML11 2

ML3

3

ML2
ML4
MLxx

ML1
ML32

3 ML2

MLxx2

• ML engines will initially be trained off-line & deployed after reaching satisfactory level of advisory knowledge
• Can continue to learn on-line (while serving as oracles) enriching their knowledge from new data and run time

Machine Learning 7

• Can continue to learn on-line (while serving as oracles), enriching their knowledge from new data and run time
feedback on the effectiveness of their advice

Figure 11.1: An overview of the PACE system

Machine learning will be used to effectively and efficiently characterize the complex interaction

104 CHAPTER 11. MACHINE LEARNING IN PACE

between program characteristics, target system characteristics and compiler characteristics. This
will be useful for solving problems encountered in several PACE tasks. As shown in Figure 11.1,
which is an annotated overview of the PACE system presented in Figure 1.2 (§ 1.2.1), machine
learning (ML) engines (marked ML1, ML2, ML3, ML4 and MLxx in rectangular boxes) are envi-
sioned to help with the tasks in the Platform Aware optimizer (PAO), the Target Aware Optimizer
(TAO) and the Run Time System (RTS). These engines correspond to the four PACE tasks identi-
fied in § 11.2.2 as likely to benefit from machine learning. From the point of view of the Run Time
System the relevant ML engines will supplement the generator function (described in § 10.2.2) to
help with the tasks of the RTS such as online feedback-directed parameter selection (described in
§ 10.3.4).

These ML engines will be provided data about the target system characteristics 1©, program
characteristics 2© and compiler characteristics 3©, by the subsystems where these circled numbers
are indicated. Thus each of the circled numbers correspond to an arrow from the corresponding
PACE subsystem to the ML subsystem

Machine learning is data driven therefore, the availability of known instances is essential. For
example, revisiting the flag setting problem, machine learning can be used to learn the relation-
ship between the program being compiled, the target system, the compiler flag settings and the
performance from known instances. Briefly, as shown in Figure 11.2, a mapping Y = f(X) exists
from elements of an input spaceX (the program, compiler and target system characteristics) to el-
ements of an output space Y (the compiler flag settings), where f is unknown. The role of machine
learning is to construct a model based on known instances (known input-output pairs or labeled
training data), which approximates the mapping f as well as possible, based on the quality of the
training instances. In the context of supervised learning, assuming the availability of a set X labeled

of known input-output pairs, elements from a subset X labeled
training ⊂ X labeled are used by the machine

learning system to construct a model by adjusting model parameters so that a good approximation
of the actual mapping f is learned. A good learning process results in good generalization of the
learned model, i.e., the model will make good predictions for patterns which were not part of the
training set X labeled

training. The learned model is then used for predicting a list of compiler flag settings
for good performance for new programs that will be encountered by the PACE system.

11.2.2 Optimization Tasks Identified for Machine Learning

Four tasks have been identified as likely candidates to benefit from machine learning. The corre-
sponding envisioned machine learning engines are indicated in Figure 11.1 in rectangular boxes
labeled ML1 through ML4. In the context of compiler optimization, we use the term “good perfor-
mance” to mean performance, in terms of execution time, code size or some other metric, which
is reasonably close to the optimal performance or is a dramatic improvement over the baseline
(unoptimized) performance.

1. Determination of tile size to optimize performance of a nested loop (ML1 in Figure 11.1)

2. Determination of compiler flag settings for good performance of a program (ML2 in Fig-
ure 11.1)

3. Prediction of program performance based on program characteristics (ML3 in Figure 11.1)

4. Determination of a good sequence of compiler optimizations for good performance of a pro-
gram (ML4 in Figure 11.1)

For each of these tasks, the input variables (input features that make up the input feature vec-
tors) will include descriptors of the target system, descriptors of the program, and the compiler,
while output variables (output features) may be program performance indicators, compiler flag
settings, or optimization sequences, as dictated by the particular ML task. The input and output
variables can and will vary across different versions of models - typically models of progressive

11.2. FUNCTIONALITY 105

Learning with a Teacher (Supervised Learning)

Unknown mapping:
Y = f(X)

(model, behavior)

Many iterations …
good learning …

Input training
patterns

(Input feature vectors):
Representative

instances x_i  X

Output training
patterns (labels)

(Output feature vectors):
Representative

instances y_i  Y
corresponding to x_i

Sampling

Constructs the mapping

Ŷ ≈ Y = f(X)

Machine Learner Ŷ_i

Adjust model parameters to decrease error

error= d(ŷ_i,y_i)

Machine Learning 1

Input space X  Rn

Ex: Characteristics of
program, compiler,

target system,
[performance]

Output space Y  Rm

Ex: Compiler flag
settings for good

performance

Figure 11.2: Schematics of supervised machine learning

levels of complexity - for a task. For example, an initial, simple version of ML Task 1 (prediction
of good tile sizes) may be designed for a single hardware platform in order to establish data need
and baseline success without the complication of multiple platforms. In this case system char-
acteristics need not be described in the input feature vector since they would be the same for all
inputs. Once a simple model is shown to make acceptable predictions, we can proceed to set up
a more complex model by including system characteristics such as cache sizes, line sizes, associa-
tivity, etc., in the input feature vector. The previously studied simple model will also help estimate
data need for training a more complex model. Another reason for varying input and output fea-
tures through different models for the same ML Task is to test the descriptive power of different
sets of variables which may characterize the same properties. (For example, both the number of
cache misses and the number of stall cycles can characterize the same aspect of the memory sub-
system performance.) Selection of variables is guided by the accumulated experience of compiler
experts, both within and outside the PACE teams, and may require separate models to work with
non-overlapping sets of variables recommended by different expert groups. For these reasons, in
this design document we are providing sets of typical variables that will likely be used, in various
combinations, throughout a number of models that we will develop for each of the ML1 - ML4
Tasks. The specific set of variables for each model will be decided at the time a particular model is
considered, and will often depend on the outcome of experiments with a previous model. We are
including one specific feature set, as an example, for our first concrete model for Task ML1, at the
end of § 11.2.2. Working lists of relevant variables, determined by PACE team members as well as
adopted from literature, are maintained in the PACE Owl space in PACE Resources/Machine Learn-
ing/Data Source/Variables for ML.xlsx file and will be revised as we accumulate experience.

Variables which capture the relevant target system characteristics will be obtained from the
resource characterization (RC) subsystem of the PACE system. The target system characteristics,
indicated as 1© in Figures 11.1 and 11.3, for which measurement methodologies have been built
so far are listed in § 2.2.3. Program characteristics indicated as 2© in Figures 11.1 and 11.3 will be
obtained from the PAO subsystem and the RTS. Compiler characteristics, indicated as 3© in Figures
11.1 and 11.3, will be obtained from the TAO subsystem and the Native Compiler (NC).

106 CHAPTER 11. MACHINE LEARNING IN PACE

Machine Learning

Resource Characterization
(RC)

1

Platform Aware Optimizer
(PAO)

2
ML1

Run Time System
(RT)

2

ML1
ML3

MLxx

Target Aware Optimizer
(TAO)

3

ML2
ML4
MLxx

Application Characterization
(AC)

ML3

ML2 3

Native Compiler
(NC)

Figure 11.3: A machine learning centric view of the PACE system

On a more general level we should point out that selection of appropriate input and output
variables that describe causes and consequences needs to be done in two contexts. The first is a
determination and listing of variables that potentially carry important information for the given
problem. Such variables must be provided by compiler experts based on their understanding of
how to represent relevant properties of programs, target systems, etc., and on their experience
with program optimization. ML experiments should start with using as complete subsets of these
expert-recommended variables as possible, and as appropriate for models of progressively increas-
ing levels of complexity.

Once satisfactory prediction performance is achieved with ML for a given (version of a) task, we
have a baseline of how well a model can perform when using all possible expert-recommended
variables (pertinent to the given version of a task). The number of these variables, however, can be
very large even if we do not count alternative variables for the description of similar causes (e.g.,
program properties). This is the second context in which variable selection should be considered,
now as a subselection from the set of variables that were used to obtain the baseline results. Ob-
viously, elimination of variables must not result in decline of prediction quality. Deselection of
variables can be done with various dimensionality reduction approaches. Dimensionality reduc-
tion approaches that involve a transformation of the feature space, such as Principle Components
Analysis (PCA), make it difficult or impossible to relate the transformed variables to the known
meaningful quantities described by the original variables. Therefore, approaches that can assess
the relative importances of the dimensions (variables) in the original feature space are much more
advantageous. Approaches for the assessment of the relative importances of variables can be di-
vided into two groups also from another point of view. The majority of available techniques make
a determination with no regard to a known analysis objective. For example, in view of a known
classification goal the important variables may be vastly different from those determined without
taking this goal into account. PCA, for example, would eliminate data based on statistical signifi-
cance (as derived from the magnitude of the eigenvalues). However, this may eliminate the infor-
mation needed to separate small classes, or to separate classes with slight differences, meaningful
for the given problem. Furthermore, linear techniques, and techniques that use low-order statis-
tics only, may miss relevant variations in the data. For all these reasons, non-linear techniques
that can also take classification goals into account should be preferred for the determination of rel-

11.2. FUNCTIONALITY 107

evant variables, in the case of complicated data such as we have in PACE. One recent technique is
relevance learning, published originally as GRLVQ (Generalized Relevance Learning Vector Quan-
tization, [38]) and further developed specifically for high-dimensional data (GRLVQ Improved,
[46]). These are two of very few available methods that jointly optimize a classification goal and
the relevance weighting of the variables (see overview in [46]). GRLVQ(I) are non-linear machine
learning approaches. We now describe the four machine learning tasks in greater detail.

Determine tile size tomaximize performance of a nested loop

Given a nested loop in a program, the tile size that minimizes the average cost of memory access
for data accesses from the loop, yields the best possible performance for the loop. Thus tile sizes
that yield good performance can be determined by predicting the average cost of memory access
corresponding to several instances of tile sizes and selecting a good instance. The selection of good
tile sizes by the machine learning engine illustrated in Figures 11.1 and 11.3 and marked “ML1”,
would be helpful in program optimization tasks in the PAO as well as in the RTS where run time
decisions on tile sizes in parametrized tiled code could be performed.

The average cost of memory access is the result of complex interaction between the memory
hierarchy of the target system and the loop that uses a specific tile size. To illustrate key variables
and their complex interaction, we use a vastly simplified example, but we emphasize that machine
learning can be used for much more complex cases. (In fact, the whole point of machine learning
is to be able to derive, from known examples, such complicated models of input / output relation-
ships that cannot be given by closed formulae or easy-to-describe rules)

Consider a nested loop in Code Fragment A that accesses elements from a matrix of sizeN×N .

A.1. For i = 1 to N

A.2. For k = 1 to M

A.3. For j = 1 to N

A.4. = Matrix[i,j]

A.5. End For

A.6. End For

A.7. End For

Code Fragment A: Untiled Loop Nest

This loop can be made efficient if the elements Matrix[i,j] accessed in line A.4 can be cached
and reused. However, traversing the entire length of the matrix before reusing the elements of a
row might be inefficient, since the entire row of the matrix might not fit into the cache. Hence, one
method of making the code efficient could be to transform the code to process the matrix “tile by
tile” such that each tile fits into the cache and is completely processed before moving to the next
tile. The corresponding code might look like this:

B.1. For Length = 0 to N/tile_length - 1

B.2. For Breadth = 0 to N/tile_breadth - 1

B.3. For k = 1 to M

B.4. For i = Length * tile_length + 1 to Length * tile_length + tile_length

B.5. For j = Breadth * tile_breadth + 1 to Breadth*tile_breadth + tile_breadth

B.6. = Matrix[i,j]

B.7. End For

B.8. End For

B.9. End For

B.10. End For

B.11.End For

Code Fragment B: Parametrically Tiled Loop Nest

In the equivalent code in Code Fragment B, the iteration space of the loop is divided into “tiles”.
Lines B.1 and B.2 loop over the first tile, second tile, third tile, ..., T th tile. Lines B.4 and B.5 visit

108 CHAPTER 11. MACHINE LEARNING IN PACE

the points in the iteration space of a given tile. A tile size that is too small would lead to poor
performance, since the loop body may not benefit from prefetching. A tile which accesses a piece
of the matrix that is too big to fit into the cache, may cause misses in the cache adding memory
overhead to the loop code.

• Target system characteristics (for each level of the memory hierarchy) such as

1. The size of the cache, L1 cache size for the L1 cache

2. The size of a cache line, L1 line size for the L1 cache

3. The associativity of the cache, L1 associativity for the L1 cache

4. The replacement policy of the cache, L1 replacement for the L1 cache

• Program characteristics such as

5. The size of array(s) along each dimension, sizei,j for the jth dimension of arrayi
6. The index expression for each dimension j of the arrayi, expri,j
7. The loop iteration range of loopi, rangei
8. The size of padding for each dimension j of the arrayi, paddingi,j
9. The number of loop nesting levels, n-nesting

• Compiler characteristics such as

5. For every loop level i the tile size, tile sizei
6. Row or Column major layout, layout

Given these variables as input and corresponding execution time (as proxy for cost of memory
access) for known instances in parameter regions which do not yield poor performances in an obvi-
ous manner, the machine learning system will build (learn) models that characterize this complex
interaction. Thus, the learned model can be used for rapid search through the parameter space
of (reasonable and not obviously disadvantageous) tile sizes to predict the execution time without
having to run the program.

It may seem surprising that we predict execution time corresponding to an input tile size and
post process rather than the intuitive approach of predicting good tile sizes directly. This is be-
cause several tiles might yield the same execution time and therefore the mapping from execution
time to tile size, which is a one-to-many mapping would be difficult, if not impossible to learn in a
supervised learning framework (as depicted in Figure 11.2). In contrast the many to one mapping
of tile sizes to execution time can be learned. We describe this design decision again in § 11.3.1 and
the more general philosophy.

Finally, we give a concrete example of a specific version of the model for ML1 task along with
the specific variables we use in the training of that model. This model is the first and simplest
version of the ML1 task where the target system is kept constant and therefore we do not need
variables to characterize the target system. To describe program characteristics in this case we
chose tile size (tile sizei) the number of accesses and misses in the first and second levels of the
data cache respectively (L1CDA, L1DCM, L2DCA, L2DCM), the number of accesses and misses
in the TLB (TLBDA, TLBDM), and the number of vector instructions which have been executed
(VECINS) as elements of the input feature vector to predict execution time. The use of execution
time as proxy is based on expert opinion that the execution time is a linear function of the average
cost of memory access. Likewise, ignoring the effects of vectorization, instruction-level parallelism,
out of order execution etc. is based on expert opinion that these aspects do not affect the process
of learning the mapping between tile sizes and execution time. Based on the understanding of the
descriptive power of the variables included in this simple model, more variables may be considered
in a subsequent more complex model. Concretely, the subsequent model we plan will include
variables which characterize the effectiveness of hardware prefetch strategy. We think that this will

11.2. FUNCTIONALITY 109

improve the accuracy of predictions and will help generalize our model across loop bodies and
across target systems. The added variables would be the average number of memory references (in
a single iteration of the innermost loop) that could and could not be prefetched by the target system
(n PF, n NPF). The reason for developing our model in an incremental fashion is to separate and
understand the various aspects of the interaction between the program and the target system as
well as to get a good grasp on the amount of training data required for good model building.

Determine selection of compiler flag settings for good performance of a program

Typically a compiler has several flags which turn optimizations on or off, set parameters for various
optimizations, and so forth. For example, the flag -finline-functions-called-once, requests the gcc
compiler to inline all functions which are called only once. Given a program, a target system and
a compiler, one problem is to determine a list of flag settings which produces compiled code with
good performance. In the PACE context, the setting of such flags and parameters is part of the
generation of optimization directives and parameters for the optimization plan (§ 3.2.3).

The number of choices given k flags is typically exponential in k. The metric of the quality of
the compiled code could be the execution time of the code or the size of the compiled code. In
PACE, such flags are passed from the PAO to the TAO as directives (5.2.2). The machine learning
engine marked as “ML2” in the Figures 11.1 and 11.3 will assist the PAO in selecting flags for good
application performance.

The complexity of this problem arises from the fact that typical compilers have tens to hun-
dreds of flags with an ever larger number of combinations of these flag settings. Furthermore, the
effectiveness of specific optimizations depends on the interaction between the characteristics of
the program, the target machine and other optimizations performed by the compiler. For exam-
ple, function inlining may be beneficial, harmful or have no impact on the performance depending
on

1. The effect on the instruction cache

2. The effect on the register pressure

3. The effect on other optimizations like constant propagation, common sub expression elimi-
nation etc.

Thus the optimal list of compiler flag settings is influenced by

• Target system characteristics such as

1. The characteristics of the memory hierarchy of the target system described above

2. The size of each type of register file, for example, int reg size for the integer register file
size, float reg size for the floating point register file size and so on

3. The number of each type of functional unit, FPmul num for the number of floating point
multipliers, for example

4. The length of the pipeline, pipeline length

5. The penalty for branch misprediction, miss predict penalty in number of cycles

6. · · ·

• Program characteristics such as

5. The dynamic instruction ratio for each type of instruction i, dynamic inst ratioi
6. The static instruction ratio for each type of instruction i, static inst ratioi
7. The ratio of backward branches to total number of branches, forward branch ratio

8. The average rate of branch mispredictions, branch mispredict ratio

9. · · ·

110 CHAPTER 11. MACHINE LEARNING IN PACE

• Compiler characteristics such as

5. Callee vs. caller saved registers, calling convention

6. · · ·

By learning from known instances of the mapping between the list of variables which corre-
spond to the characteristics enumerated above and the list of desired flag settings, the desired list
of flag settings for a new program will be determined by machine learning. The desired list of flag
setting is that list which achieves performance reasonably close to the optimal performance of the
compiled code.

Predict program performance based on program characteristics

Consider the following scenario where there are two target systemsA andB whose characteristics
are known. For a set S of programs, the execution characteristics are known for each of the pro-
grams in S on the target system A. For a subset S′ ⊂ S of programs, the execution characteristics
are known for the execution on the target systemB. By learning from the execution characteristics
of all programs onA and the execution characteristics of some of the programs onB, the machine
learning system will be used to predict the performance of a programP ∈ S\S′ whenP is executed
on the target system B. This engine, ML3 in Figures 11.1 and 11.3 will aid the application charac-
terization task of the PACE system where predicted application performance (and performance of
parts of applications such as procedures and loop bodies) serve as an indicator of application bot-
tlenecks. This engine will also aid the RTS system where predicted application performance can
serve as a basis for decisions regarding where and when to apply run time optimizations.

Determine a good sequence of compiler optimizations for good performance of a program

In typical compilers, not only can optimizations be turned on or off, the order in which various
optimizations are applied and the number of times they are applied can be controlled as well. For
example, optimizations such as dead code removal, common sub-expression elimination, con-
stant propagation and inlining may be performed in an arbitrary order for an arbitrary number of
times. Thus one frequently encountered problem is to determine the sequence of compiler opti-
mizations to perform to yield good performance, where each optimization may be applied zero or
more times. In the PACE context, this problem corresponds to item 5 in the optimization plan (
§ 3.2.3).

We distinguish between the task described in § 11.2.2 (ML2) and the task described here (ML4)
as follows: In ML2, the task is to determine a selection of flag settings with no implied order of opti-
mizations while in ML4 the problem is to determine a sequence of optimizations which yields good
performance. These sequences can be of arbitrary length with possible repetition of optimizations.
The corresponding learning engine is marked as “ML4” in Figures 11.1 and 11.3. Of the four tasks
that have been identified in this section, this task is the least defined and least understood due to
issues elaborated in § 11.3.2. Consequently the accomplishment of this task carries higher uncer-
tainty than that of the other tasks.

The issues involved in effective learning, different machine learning approaches and the chal-
lenges associated with applying machine learning in the PACE context are discussed in the next
section.

11.3 Methodology

11.3.1 Abstraction of PACE Problems ForMachine Learning

We developed a framework for expressing compiler optimization problems as machine learning
tasks. This is illustrated by the schematics in Figure 11.4 for the specific problem of tile size deter-

11.3. METHODOLOGY 111

mination, described under § 11.2.2. The input and output feature spaces, shown for the general
case in Figure 11.2, are determined by what feature(s) we want to learn from what other features.
This is explained below through the specific example of determination of optimum tile size for a
given loop.

The optimal tile size depends on several characteristics of the target system, the program, and
the compiler, such as the number of distinct references made to the elements of the matrix and the
spatial relationship of these references and their interaction with target system characteristics (as
discussed in § 6.3.6).

Thus the input feature space which describes the multi-dimensional space of these variables
could include the variables listed on page 108. The performance of a loop body with a particular
tile size may be quantified using the average cost of memory access in cycles for each of the memory
access in the loop body. In this case, this is the (single) dependent variable (a single output feature)
that we want to be able to predict. This set of input and output variables span the multidimensional
space which is the feature space for this task. Vectors in this feature space are called feature vectors
and instances of known corresponding input - output feature vectors form the input-output pairs
which will be used to train a supervised machine learning algorithm (as shown in Figure 11.2).

The total execution time of a loop body is a linear function of the average cost of memory access
in most circumstances known to us. Therefore, we can use the execution time as a proxy in ML

predictions. Specifically, we assume that the following factors do not distort the linear relationship1

1. Instruction-level parallelism

2. Out of order execution

3. Branch prediction accuracy

4. Compiler optimizations such as constant propagation and strength reduction

5. Other target system artifacts such as accuracy of prefetchingScheme for ML1: Finding Optimal Tile Size to Maximize Performance of a Loop

Output feature vector

P f I di t

Input feature vector

T t t P C il

exec

Supervised
MLarray

array
…index
index
…rang
rang
…L1D

C
L1D

C
L1D

T
… layou
tile s
tile s
tile s
…L1 ca
L1 lin
L1 as
L1 re
…

Performance IndicatorTarget system
Characteristics

Program
Characteristics

Compiler
Characteristics

c tim
e

y size
1,1

y size
1,2

x expr1,1,1
x expr1,1,2

ge
1

ge
2

C
A

C
M

TLB
A

ut
size

1
size

2
size

3

ache size
ne size
ssociativity
eplacem

ent

data from RC RTS PAO PAO,NC RTS
sample

Typical attributes of the feature space, and envisioned ML setup

Q: Why not predict tile size directly, i.e., use tile size as output feature and include the exec time as an input feature?

A: Exec time (proxy for cost of memory access) has a one-to-many mapping to tile sizes, hard (if not impossible) to learn.
The many-to-one mapping from tile sizes to exec time can be learned

Machine Learning 11

The many-to-one mapping from tile sizes to exec time can be learned.

The favorable range of tile sizes can be filtered quickly by simple ranking of predicted performances in post-processing.

Figure 11.4: Machine learning schematics for the tile size optimization problem

We note that it would seem more intuitive for this particular example to predict the tile size (use
tile size as the output feature) and include the execution time in the inputs, but the execution time
(and average cost of memory access of the loop body) has a one-to-many mapping to tile sizes,
which is hard if not impossible to learn. The many-to-one mapping from tile sizes to the execution
time (and the average cost of memory access of the loop body) can be learned. From predicted
performances the favorable set of tile sizes can be filtered quickly by simple post-processing.

1Factors such as vectorization will have an impact on execution time, though the impact will most likely be the same across
different tile sizes. This ensures that the linear relationship between the average cost of memory access and the total exe-
cution time across tile sizes is not distorted. There will be corner cases, such as one of the dimension of the tile size being 1,
where vectorization might have a dramatically less effect on performance but we ignore or filter out such corner cases.

112 CHAPTER 11. MACHINE LEARNING IN PACE

The design of a feature space is a significant effort. It may require multiple phases beyond
the initial abstraction exercise. For example, it should be ensured that variables relevant to the
problem are captured in the input feature vector, else machine learning (and any learning) will
be ineffective. Given a feature space, instances of the feature vector for which the target output
features are known - labeled samples - should be generated or acquired. These constitute the train-
ing data from which the machine learner learns a model of the relationship between target system
characteristics, program characteristics, compiler characteristics, and performance. The relevant
features may not always be known in advance. If the learned model performs poorly one reason
can be that some important feature has not been taken into account, which may warrant revision
of the feature space, which in turn will necessitate a repeat of the learning experiments.

11.3.2 Challenges From aMachine Learning Point Of View

Compiler optimization involves a large number of variables in the input space (several dozens at
least), and often also in the output space (dozens to over a hundred compiler flags, for example).
The variety of complex interactions among the features results in a large number of patterns of be-
havior each of which requires a different optimization sequence to increase performance. This cre-
ates a learning task to map multi-variate inputs to multi-variate outputs, both potentially high di-
mensional, and to delineate many classes (or precisely distinguish many degrees of some quantity
such as execution time or tile size). The number of machine learning paradigms capable of dealing
with such complexity of learning, is limited, and even the capable ones may not have been demon-
strated on quite as ambitious tasks as those envisioned in PACE. Our experience from prior work
[51, 69, 60, 48, 72, 73] with excellent machine learning performance on data that represent some
of these or similar challenges (in a different application domain) will be utilized in this project. An
additional challenge is that the variables in the PACE feature spaces are often mixed (disparate)
types. This makes it hard to express or assess their relative importance, which in turn brings in is-
sues of scaling and measures, both important for the success of machine learning. We are bringing
considerable experience to PACE on this subject as well (e.g., [46] and references therein).

The specific ML technique for a particular ML task will depend on the nature of the task (regres-
sion, classification, clustering), the required resolution / precision of the prediction, the expected
complexity of the mapping from input to output feature space, the dimensionality of the feature
space, the amount and quality of training data available, the prediction capabilities of the given ML

technique, and the computational expense.
Both supervised and unsupervised learning schemes will be used: supervised learning for re-

gression (function approximation, prediction of continuous variables), or for classification, and
unsupervised learning for clustering. Candidate learning approaches are discussed in some detail
under §11.3.3.

The impact of training data onmachine learning

For learning complicated relationships among features, typically a large number of labeled pat-
terns is needed for training, which may not exist or may be hard to acquire. A careful design of
training data is critical, in any case, to ensure sufficient number of labeled samples and appropri-
ate coverage and distribution over the problem space, for adequate representation. The availability
and the time needed to generate training data is also an important aspect to be considered.

To test the performance of the learned model test samples are used. Test samples are labeled
samples which are known to the model developers but not used for the training of the model, and
which are set aside for the evaluation of the model’s performance on data that the model has not
learned from. The extent to which a learned model can make good predictions for unseen sam-
ples (samples outside the training set) is called the generalization capability. Producing models
with good generalization capability is the main objective of machine learning. Sampling theories

11.3. METHODOLOGY 113

prescribe the number of test samples necessary for statistically significant assessment of the gen-
eralization capability. The requisite number can be very high for problems involving many classes
and high-dimensional feature vectors.

The quality of the training data is also important. Noise and mislabeling are frequent adverse
effects. Noisy data may require more samples to learn well, especially where classes are close in
the feature space. Incorrect labeling can confuse the learner and decrease its performance. Care-
ful evaluation of the noise situation, and verification of truth labels is imperative, and may take a
few iterations, since the combined effect of noise and class proximities are usually not known; and
incorrect labeling sometimes is only discovered from the learning itself. The above may necessi-
tate revision of the training data and repeating of the learning experiment a few times in order to
converge on an effective learned model.

Alternative to supervisedmachine learning: clustering

Clustering, a major type of unsupervised machine learning (Figure 11.5) is of fundamental impor-
tance, for two reasons. One is that good manifold learning that precisely maps the structure of
the feature space enables discoveries of pattern groupings, and relationships among them. For ex-
ample, we may discover previously not known program or compiler behaviors, or interactions be-
tween them. Another reason is that knowledge of the cluster structure can greatly assist in achiev-
ing subsequent accurate supervised classification and regression, by enabling fine discrimination
of classes with subtle (but consistent) differences. Examples of these in earlier work (from a differ-
ent application domain), where the feature space comprised hundreds of input features and up to
several dozens of classes, include [48, 51, 60, 48, 72, 73].

Unsupervised
Learner

Input training
patterns

(Input feature vectors):
Representative

instances x_i ∈ X

Model of the
input space

Output training
patterns

(Output feature vectors):
Representative

instances of y_i ∈ Y
corresponding to x_i

An unsupervised (self-organized) learner captures
some internal characteristics of the data space.
• Ex: structure (clusters)
• Ex: principal components
• Ex: independent components

Figure 11.5: Schematics of unsupervised machine learning

Another use of clustering that will very likely have a significant role in PACE tasks, is the follow-
ing. When labeled training data are scarce, we can cluster the feature vectors, take some summary
descriptors (such as the averages) of the clusters as the typical behavior of the members of the clus-
ters, and develop expert treatment for these cluster representatives. Then the members of each
cluster can be expected to benefit from the same treatment. New feature vectors (at run time, for
example) can be assigned to existing clusters by the trained model thereby indicating what treat-
ment should be applied. This is illustrated in Figure 11.6, where the input feature vectors consist of
descriptors of the target system, the program to be compiled, and the performance of the program

114 CHAPTER 11. MACHINE LEARNING IN PACE

with default compiler settings, and the resulting clusters represent categories of program behav-
iors. Through the (off-line) post processing indicated by the black rectangles the clusters can be
labeled for treatment with appropriate optimization sequences developed for the discovered clus-
ters. Bundled together, the clustering engine and the canned optimization sequences can serve as
a run-time oracle-and-optimization unit.
Scheme for ML2: Finding Good Compiler Flag Settings – with Scarce Labeled Data

Input feature vector

dyn
dyn
…sta
sta
for
bra
…int
floa
L1
L1
L1
…

Unsupervised
ML

exe
…C
ac

…

Target system Program Performance indicators

Clusters of
behavior

nam
ic inst ratio

nam
ic inst ratio

atic inst ratio
1

atic inst ratio
2

rw
ard branch r

anch m
ispredict

reg
size

at reg
size

 cache size
 line size
 associativity

ec tim
e

che m
iss ratio

Cluster centers:
Behavior types
Label exists?

Input to AAP

o
1

o
2

ratio
t

ratio

Label exists?

Expert designs optimization
for behavior types;

U l b l d i t d t (ll il bl d t)

Automatic labeling
using library of

No Yes

apply to cluster membersUnlabeled input data (all available data)
g y

optimizations

Library

Machine Learning 13

Figure 11.6: Unsupervised machine learning scheme for compiler flag optimization

11.3.3 Candidate Machine Learning Approaches

Neural networks

The methods we will be applying are all non-linear techniques, as–with perhaps a few exceptions–
based on prior knowledge we anticipate problem spaces with complex, convoluted relationships
among variables, and non-linearly separable classes.

Based on past experience with data sets and problems similar in their nature to those expected
in the PACE context, neural computation is high on our candidate list. Neural approaches have
demonstrably performed better on learning from such data than a number of other, well known,
machine learning algorithms [12, 47, 40]. One of us (EM) has been developing neural modules un-
der NASA funding for clustering (unsupervised learning) and classification (supervised learning)
of high-dimensional (hyperpsectral) imagery, which has similarities with PACE data in dimension-
ality, considerable number of classes, scarce training samples, complex class/cluster structure. We
also have experience with using neural computation for function approximation where the domain
has hundreds of dimensions [72, 73].

We want to point out here that by “neural network” we do not imply “Back Propagation Neural
Network (BPNN)”. While our models may include, in simple cases, BPNNs, for complex cases
we anticipate using more sophisticated and more robust neural architectures that were developed
specifically for complicated high-dimensional data as mentioned above.

In a nutshell, these more robust approaches involve learning the structure of the data manifold
first, in an unsupervised manner, and storing that knowledge in the form of a neural map (Self-
Organizing Map, SOM) and related descriptors derived from the neural map. SOMs are adaptive

11.3. METHODOLOGY 115

vector quantizers (VQs) that place prototype vectors in the data space for optimal matching of the
data distribution. SOMs have a unique property among VQs: they also represent the topology of
the input data space by organizing (indexing) the quantization prototypes according to the simi-
larity relations of the data. SOMs mimic the biological neural maps observed in various areas of
the cerebral cortex. Neural maps form in response to input stimuli (data) and organize the stimuli
on the 2-dimensional surface of the cortex while preserving the topological relations (the mani-
fold structure of the input data). This facilitates fast and precise retrieval of patterns. Since SOM
learning is unsupervised, the entire available data set can be used for its training, thus the SOM can
form its own view of all available details of the manifold structure. A trained SOM can subsequently
be snapped into a feed-forward, fully connected supervised network as its hidden layer, where the
output layer is trained using the outputs of the SOM as inputs, and using a simple Delta rule (rather
than the complicated BPNN rule). During supervised learning by this “SOM-hybrid network, the
hidden SOM layer pre-screens the input patterns by indicating where they belong on the manifold.
This helps the output layer learn to categorize the patterns into classes based on training labels
- fast and precisely. Applications of this network architecture are described in a number of our
previous works. An overview with references is given in [49].

This SOM-hybrid neural network is much easier to train than a BPNN network (is not prone to
getting stuck in local minima). It has several other advantages over a BPNN network, as well as over
other learning algorithms. The knowledge of the underlying SOM about the manifold structure -
which is independent of the users knowledge, provided for supervised training as a set of training
labels - makes it resistant to learning inconsistent labels. The topology preserving ptorotype based
representation of the manifold by the SOM hidden layer allows good quality supervised learning
from smaller number of training labels, and enables very precise discrimination of classes whose
feature vectors may have slight but meaningful differences for the given application. The price
to pay for all these advantages is in the training and interpretation of a high quality SOM. Issues
relevant to this have been studied extensively, and tools developed, by the Merényi group. A recent
book chapter summarizing related details is [52].

Neural networks have special significance in classification of feature vectors with disparate vari-
ables because (supervised) neural networks may be the only way to automatically derive - as part
of the learning - appropriate scaling for the mixed types of variables.

Neural computing has also been used, successfully, for assessing the relative importance of the
input features, for the purpose of eliminating non-contributing features. While this is quite difficult
to do with traditional statistical approaches [12] some supervised neural network methods can
naturally produce the weighting based on the training samples. Further, learning of the relevances
of the features can be done in a joint optimization for a given classification goal [38, 46].

However, the extremely high number of flag settings (output features, or classes), for example,
exceeds previous experience, presents “firsts” and unknowns, which make compiler optimization
and uncharted territory, to be approached with cautious optimism and with a commitment to fur-
ther research.

Genetic algorithms

Genetic Algorithms are the natural choice for some PACE tasks, as earlier work by PACE investiga-
tors [27] (and other groups) demonstrated. In particular, the task of finding good order of (good)
compiler flag settings involves (potentially) variable length feature vectors, which would be han-
dled poorly by most other machine learners. Genetic Algorithms could also be used to do a fine-
grained search in the vicinity of a solution proposed by a different ML algorithm (on a finer grid
than the training data for the other ML algorithm was generated), to explore whether significantly
better solution may exist. The drawback of Genetic Algorithms is, however, that they do not have
a memory (do not build a model), therefore they cannot exploit experience gained from past in-

116 CHAPTER 11. MACHINE LEARNING IN PACE

stances (they have to evaluate each instance through a new search).

Other possibilities

Markov Models and Hidden Markov Models have already been applied successfully by us (LC and
KP) in earlier research for the prediction of pre-fetching [44]. This software is already part of our
arsenal and will be used in the Run-Time subsystem of PACE (box MLxx in Figures 11.1 and 11.3).

11.3.4 Productivity metric for Machine Learning

The performance of Machine Learning for PACE should be assessed on two levels. On the higher
level, the overall effectiveness of ML will be measured by the quality of advice the ML models will give
to the various subsystems (as shown in Figure 11.1) for their decision making. The exact way (or
ways) to best characterize this effectiveness will be determined in the course of the development of
the PACE system. However, the metric of overall effectiveness should be some combination of (1)
the improvement in program performance and (2) decrease in the time needed to achieve the op-
timization. The ingredients for creating a meaningful metric, in any case, will come from run-time
recording of performance improvements in program executions (or in optimization effort) a result
of ML advice to the PACE compiler. Below we discuss some details of how these measurements can
be done.

Quantifying the improvement in program performance

First, we discuss how the improvement in program performance may be quantified. This can be
characterized with two different baselines: (a) the performance of the optimized program (running
time, code size, memory footprint etc.) with the performance of the unoptimized program as the
baseline. (b) the performance of the optimized program with the best possible performance of the
program as the baseline. The improvement of the performance of the optimized program over the
unoptimized program can be quantified in a relatively straightforward manner by measuring the
performance of the unoptimized and optimized versions of the program. Since the performance
of the unoptimized program would have been measured in any case to help drive decision making
and adaptation in the various subsystems of the PACEcompiler, we do not expect this comparison
to incur significant additional resources (time, instrumentation effort etc).

When the performance of the optimized program is compared with the best possible perfor-
mance of the program as the baseline, it characterizes the amount of optimization opportunity dis-
covered by the ML subsystem. For small program regions and for a small set of optimizations, the
baseline can be determined by searching the set of all possible optimization decisions. However,
for most practical scenarios involving large programs and a large set of possible optimizations,
determining the baseline could prove difficult. In this case, several alternative strategies may be
adopted such as

1. Comparing the decisions of the ML engine with those of a human expert. This has several
advantages-in particular, not only can the performance of the human expert-optimized and
ML-optimized programs be compared, but thenature of decisions such as the flags that are set
by the human expert and the ML engine, could yield valuable insights for the human expert
as well as for the design of the ML models.

2. Generating synthetic program regions with known optimal (and therefore known baseline)
performance. For example, a program with a synthetically generated sequence of instruc-
tions whose critical path length and instruction latencies are known, may be used to study
the effectiveness of an instruction scheduler.

3. Using search strategies which either build on the ML decisions or are independent of the ML

decisions to determine if program performance can be improved dramatically. For example,

11.3. METHODOLOGY 117

genetic algorithms could be used to search the neighborhood of the decisions made by a
different ML approach to determine if better solutions exist

Quantifying the decrease in time needed to achieve optimizations

The decrease in time needed to achieve optimization can be quantified under two categories. The
first is the reduction in the time needed to perform optimization decisions when the time needed
for non-ML (but automated) approach is the baseline. For example, the time taken for the task of
determining good tile sizes by (the non-ML approach of) searching, can be compared to the time
taken by a trained ML engine to perform the same task. The second is the reduction in time needed
when the time needed by a human expert to adapt the compiler to a new computer system and/or
to perform optimization decisions is taken as the baseline. In both these comparisons, the time
needed for the initial one-time training of the ML engine should be considered in some amortized
manner.

Before evaluating the overall effectiveness of ML models for PACE, we must, however, mea-
sure their performance on a lower level first. The purpose of this is to ensure that the ML engines
are well trained for the particular tasks, with the available data. As with any machine learning
technique, a supervised model’s prediction capability needs to be assessed by both a) verification
of the learning success on the training data; and b) evaluation of the prediction accuracy on test
data (data not used for the training of the model but drawn from the same data distribution),
as described in §2.1. Moreover, the reliability (consistency) of the model must be evaluated by
building a number of separate models through “jackknifing” (or cross-validation). This means that
training and test data sets for each model are obtained through repeated shuffling of the available
labeled data and splitting randomly into training and test data sets. The variance of the prediction
of the resulting models on the respective test data sets should be small for the result to be credible.
Only when trained models are found excellent in their generalization capability (i.e., in their
prediction on test data) can one assume that an ML technique is providing advice based on what
it derived, by learning, about the relationship between input and output variables. Consequently,
only in this case can we attribute any observed improvement in program or compiler performance
to Machine Learning.

11.3.5 Infrastructure

One of us (EM) has been developing neural learning modules under funding from the Applied
Information Systems Research program of NASA’s Science Mission Directorate for clustering and
classification of high-dimensional (hyperpsectral) data, which have similarities with PACE data in
dimensionality, large number of classes, scarce training samples, complex class/cluster structure.
These learning and data visualization engines have been used to support science investigations
in earth and space science, as well as in medicine [50, 60, 33]. The software developed for these
applications will be modified and augmented appropriately to interface with PACE data and used
for experiments implementing the machine learning tasks outlined in § 11.2.2. We need to jump an
initial hurdle of software migration, from Sparc / Solaris to X86 / Linux environment, forced by Sun
Microsystem’s phasing out of the Sparc architecture. While it is a non-trivial exercise, we soon will
have a full time professional Research Programmer Analyst on board (interviews are ongoing) to
help accomplish this task, as well as the necessary further developments. Experiments to develop
learning engines and learned models will be conducted in our existing Sparc / Solaris environment,
parallel to the migration effort.

118 CHAPTER 11. MACHINE LEARNING IN PACE

11.4 Conclusions

The machine learning component of PACE is in the design phase, lagging behind the other com-
ponents by about 6 months on purpose to allow proper connection to already developed ideas
and structures by the Resource Characterization, Platform Aware Optimization, and Run-Time
groups. In consultation with these groups, we have defined an abstract framework for the con-
nection points, input and output variables (the feature space) and the types of learning engines for
machine learning tasks that are most likely to benefit the PACE system.

We are close to finishing the design of training data and data collection plan for the first problem
we want to target with machine learning, the tile size optimization to be used in the PAO (§ 11.2.2).
We anticipate starting learning experiments in the summer of 2010.

Machine learning for compiler optimization is in its infancy, with much unexplored potential -
and potentially with some hard surprises that could require development of new approaches. From
what we have researched, combined with our previous experience, we are cautiously optimistic
that we will be able to develop several effective machine learning components for the PACE system.

Appendix A

Automatic Vectorization in the PACE

Compiler

The Platform-Aware Optimizer (PAO) analyzes loops for their vectorizablility. If the PAO

determines that a loop is vectorizable, it marks this loop as such and performs analysis
and transformations to enable vectorization. If the target supports short vector instruc-
tions (for example Altivec, VMX, or SSE) and either an LLVM backend producing native
code or the C backend is used, the Rose to LLVM translator transfers this information
to LLVM IR. The vectorization pass in the TAO uses the analysis information supplied
by the PAO to replace scalar LLVM operations by LLVM vector operations, where a cost
model determines if it is beneficial to do so. This document describes the interfaces
between the components involved and the TAO pass responsible for vectorization.

A.1 Overview

Vectorization in the PACE compiler is performed as a cooperative effort between the PAO and the
TAO. The PAO analyzes whether loops are amenable for vectorization, optionally performs trans-
formations to enable vectorization, and performs several analysis passes on the code to generate
information that is needed by the TAO’s vectorization pass. The TAO’s vectorization pass requires
the following types of information:

• Alias information describes which array or pointer names may alias the same memory loca-
tion.

• Alignment information describes which memory accesses (loads, stores) are aligned with re-
spect to the vector unit alignment requirement.

• Bundles describe memory accesses to consecutive memory locations, produced by unrolling
the loop.

• Memory dependence information describes dependences between loads and stores. The PAO

builds a dependence graph.

The PAO annotates SAGE III IR with pointers to the above information data structures. For ex-
ample, when the PAO performs the dependence analysis pass, it builds a dependence graph data
structure and annotates each SAGE III IR array load with a pointer to the node representing that
load in the dependence graph. The Rose to LLVM translator takes the annotated SAGE III IR as input

Principal Contacts For This Chapter: Arnold Schwaighofer, Arnold.Schwaighofer@rice.edu, and Jisheng Zhao,
Jisheng.Zhao@rice.edu

119

120 APPENDIX A. AUTOMATIC VECTORIZATION IN THE PACE COMPILER

!"#$ %&'()**+,$ -"#$
./0($

1%$

"2304$ 56472($"23/'$
8(9:$

;</9=$

+(>?&<3@(7$

**+,$1%$

**+,$

1%$

"2304$ 56472($"23/'$
8(9:$

;</9=$

Figure A.1: Vectorization interplay between PAO, Rose-to-LLVM Translator, and TAO

and translates the annotated SAGE III IR to LLVM IR, transforming the pointer information into LLVM

metadata. The vectorization pass in the TAO uses alias, alignment, dependence, and bundle infor-
mation and transforms scalar LLVM instructions to vector LLVM instructions by performing a cost
model-based instruction selection algorithm that chooses between scalar and vector instructions.

Figure A.1 illustrates the interplay between the three components.

A.2 Functionality

The PAO recognizes loops that are amenable to vectorization, either because they have statements
that can be unrolled and then replaced by vector instructions, or because the loop body contains
instructions that can be vectorized. The following text refers to the component in the PAO that
recognizes vectorizable loops as the PAO vectorizer. The PAO vectorizer marks vectorizable loops as
such in the SAGE III IR.

The vectorization pass in the TAO operates on straight line code. The PAO vectorizer tries to
generate a longer block of straight line code using the PAO’s loop unrolling component. The loop
unrolling component marks accesses to consecutive memory locations, which have been repli-
cated by unrolling, as bundles. For example consider the statement a[i] = in a loop body, which,
after the loop unroller has unrolled it one time, results in two memory accesses a[i] = and a[i+1]

=. The loop unroller stores the two stores as a bundle. The PAO uses the data dependence analyzer
to build the memory dependence graph among memory accesses in the loop body.

After unrolling, the PAO performs alias and alignment analysis, and annotates the SAGE III IR

with links to the analysis data (including the dependence graph and bundles).
The PAO vectorizer may perform several loop optimizations to enable vectorization. For exam-

ple, it can perform loop peeling to align memory accesses with respect to the vector unit alignment
requirement. It may perform loop fusion to enable more opportunities for vectorization, or it may
perform loop interchange to bring the loop carried dependence to the innermost loop. By mov-
ing a loop carried dependence to the innermost loop and unrolling the loop, the dependence with
respect to the vector unit length becomes loop independent. The straight line code vectorization
might then find enough opportunities to vectorize the code, so that vectorization is still profitable
(see figure A.2 for an example).

The process of vectorization in the PAO is illustrated in figure A.3.
During translation of SAGE III IR to LLVM IR, the Rose to LLVM translator converts the pointers

to the analysis information in the SAGE III IR to links attached as metadata to LLVM’s instructions.
It embeds the alignment information directly in metadata instead of accessing it through a link.

Next, the TAO runs its vectorization pass, which examines the loops marked as vectorizable and
performs straight line vectorization on them. The vectorization pass uses the analysis information
provided by the PAO to guide the instruction selection algorithm that replaces some scalar LLVM

A.2. FUNCTIONALITY 121

for(i in 4 ... 4000)

for(y in 0 ... 4000)

a[y][i] = d[i] * c

= a[y][i+1] + a[y] [i];

(\pao{} interchanges and unrolls) ==>

for(y in 0 ... 4000)

for(i in 4...4000, +2)

a[y][i] = d[i] * c

c[y][i] = a[y][i+1] + a[y][i];

a[y][i+1]= d[i+1] * c

c[y][i+1]= a[y][i+2] + a[y][i+1];

(TAO selects vector instructions) ==>

for(y in 0 ... 4000)

for(i in 4 4000, +2)

tmp:0:1 = d[i:0:1] * c:0:1

tmp2 = a[y][i+1]

tmp3 = a[y][i+2]

tmp4:0:1 = pack [tmp2:tmp3]

a[y][i:0:1]= tmp:0:1

c[y][i:0:1] = tmp4:0:1 + tmp:0:1

Figure A.2: Loop interchange to enable vectorization

instructions by vector instructions. It incorporates instruction cost information provided by the
RC. In addition to costs for scalar operations, the cost of vector instructions is also needed.

It is impossible to measure the cost of various vector operations from portable C programs and
at this point in compilation, it is known that the PACE compiler uses LLVM with either a native
or the C backend. So RC measures the cost of vector instructions through LLVM. For example,
RC measures the cost of doing a vector fadd by timing LLVM IR. At a later time the vectorization
algorithm in the TAO may also incorporate the number of available registers to guide the instruction
selection process.

The following two sections describe the input to the TAO’s vectorization pass and the output it
generates.

A.2.1 Input

The vectorization pass in the TAO uses the following inputs to perform replacement of scalar oper-
ations by vector operations in straight line code.

Scalar LLVM code The TAO accesses the PAO analysis information as LLVM IR with LLVM metadata
that encodes the analysis information or contains links to the analysis data structures.

Vectorizable LLVM IR loops The PAO marks an innermost loop as vectorizable by annotating the
SAGE III IR AST node representing the back edge of the loop. The Rose to LLVM translator transfers
this annotation to the corresponding LLVM IR jump instruction using the metadata tag “!vec !1”.

122 APPENDIX A. AUTOMATIC VECTORIZATION IN THE PACE COMPILER

!"#$ %&'&$%()(*+(*,($"*&-./(0$

#)123/&14*5$ 6(,'403/40$ 744)$8*04--(0$ #)123/&14*5$
"-3&59"-3:*2;$

"*&-.535$

<45($=<$ %()$>0&)?$ <45($=<$ %()$>0&)?$ <45($=<$ %()$>0&)?$ <45($=<$ %()$>0&)?$

<45($=<$

%()$>0&)?$

"-3&5@"-3:*$

AB*+-(5$

<45(C4776D$

Figure A.3: Vectorization in the PAO

!1 = metadata ! { i1 true }

; ...

for.inc10:

%.incr15 = add i32 %i.0, 1

br label %for.cond8, !vec !1 ; back edge

The vectorization pass in the TAO uses this information to guide which code blocks it should
vectorize.

Alias information The PAO performs alias analysis and stores the sets of aliased variables. It an-
notates the loads and stores in SAGE III IR involving those variables with pointers to these sets. The
Rose to LLVM translator enables the TAO to access those sets through LLVM metadata links. If the
set only contains one variable name, a null link is stored in the metadata instead of a link to the set.
The metadata tag used is !aliasinfo.

!2 = metadata ! { i64 0x0 } ; Singleton set

; ...

%elemaddr= getelementptr [2000 x float]* %array, i32 0, i32 %i

%val = load float* %elemaddr, !aliasinfo !2, ...

Alignment information Vector instructions involving memory accesses on certain architectures
require the access to be aligned at a specific byte boundary. For example, SSE requires memory
loads and stores to be 16 byte aligned. Otherwise the programmer must use more expensive un-
aligned memory move instructions. The PAO tries to generate loops that contain mostly aligned
memory accesses, for example, by peeling a loop. The PAO annotates memory accesses (loads,
stores), whether they are aligned or not. The TAO accesses this information as LLVM metadata by
using the tag !aligned.

!0 = metadata ! { i1 false }

!1 = metadata ! { i1 true }

; Code: ... = a[i]; ... = a[i+1];

%elemaddr= getelementptr [2000 x float]* %array, i32 0, i32 %i

%val = load float* %elemaddr, !aligned !1, ...

%elem2addr= getelementptr [2000 x float]* %array, i32 0, i32 %iplusone

%val2 = load float* %elemaddr, !aligned !0, ...

A.2. FUNCTIONALITY 123

Memory dependence analysis The PAO generates a dependence graph for memory accesses in
the loop. It annotates the SAGE III IR memory accesses with pointers to the nodes in the depen-
dence graph that represent these memory accesses. The Rose to LLVM translator provides access
to this information through LLVM metadata by using the tag !dep.

; Oxaffe is the address of the dependency graph node

!3 = metadata ! { i64 0xaffe }

; ...

%elemaddr= getelementptr [2000 x float]* %array, i32 0, i32 %i

%val = load float* %elemaddr, !dep !3, ...

Bundles When the PAO unrolls a loop it replicates array accesses. For every array access that it
replicates to a contiguous memory location, it builds a tuple that contains all the replicated ar-
ray accesses. For example, if a for loop contains read accesses to a[i] and the loop is unrolled
four times, the PAO builds a bundle data structure that contains the load of (a[i], a[i+1], ...,

a[i+3]). Bundles are tuples, so the position is significant. The PAO annotates memory access
nodes in SAGE III IR with pointers to their corresponding bundle data structure. The Rose to LLVM

translator provides access to the pointers through the LLVM metadata tag !bun. The metadata as-
sociated with the tag contains not only the pointer but also the index in the bundle tuple. Bundles
simplify finding consecutive memory accesses during the vectorization pass in the TAO.

!4 = metadata ! { i64 0xf00b, i32 0 } ; 0xf00b is the pointer to the bundle

!5 = metadata ! { i64 0xf00b, i32 1 } ; 1 is the position in the tuple

; Code: ... = a[i]; ... = a[i+1];

%elemaddr= getelementptr [2000 x float]* %array, i32 0, i32 %i

%val = load float* %elemaddr, !bun !4, ...

%elem2addr= getelementptr [2000 x float]* %array, i32 0, i32 %iplusone

%val2 = load float* %elemaddr, !bun !5, ...

Resource characterization information The vectorization algorithm needs the cost of scalar and
vector instructions as input to perform instruction selection. It also needs the width of the vector
unit to generate vector types of the right size. For example, if the vector length is 128 bits, the
vectorization path will try to replace scalar double instructions by instructions of the vector <2 x

double> type.

A.2.2 Output

The vectorization pass replaces scalar instructions by vector instructions if the cost analysis has
determined it is beneficial to do so.

a0 = load double* %a1ptr, i32 %i, !bun !4, !aligned !1,

a1 = load double* %a1ptr, i32 %iplus1, !bun !4, !aligned !1, ...

b0 = fadd double %a0, %val1

b1 = fadd double %a0, %val2

The TAO vectorization pass would replace the previous code by the following vectorized ver-
sion.

%valvec.0 = insertelement <2 x double> zeroinitializer, double %val1, i32 0

%valvec = insertelement <2 x double> %valvec.0, double %val2, i32 1

a0 = load <2 x double>* %a1ptr, i32 %i, align 16, !bun !4, !aligned !1,

b0 = fadd <2 x double> %a0, %valvec

Note that the pass put the two scalar values %val1, %val2 into a vector register and that it has
annotated the memory load with the LLVM align specification. That alignment specification is

124 APPENDIX A. AUTOMATIC VECTORIZATION IN THE PACE COMPILER

necessary so that a native backend will emit an aligned memory move instead of an unaligned one,
resulting in better performance.

A.3 Method

Generating good quality vector code for a straight-line piece of IR fragment is paramount to the
performance of the program in processors that support a short vector SIMD unit. As stated in prior
work, the process of vector code generation can either be easy or cumbersome. As an example
of the former, the compiler can find consecutive memory operations, combine them, and sub-
sequently combine their dependent statements until no more instructions can be combined. As
an example of the latter, the compiler can use depth-first search, backtracking, and branch-and-
bound techniques to find the best possible way of combining operations to generate vector code. In
this document we propose a different approach to automatic vector code generation that is driven
by a cost model. The cost model guides the vector code generation steps and prunes many search
paths that would lead to suboptimal vector code generation. The cost model is combined with a
dynamic programming technique to evaluate the best cost for a sequence of IR instructions.

A.3.1 Dynamic Programming

Each TAO IR instruction has an associated cost1. As stated earlier in this chapter, the dependence
information is readily available from PAO. Using this dependence information, we build a depen-
dence graph at the TAO IR instruction level. A dependence node is an IR instruction and a depen-
dence edge a → b implies that b is dependent on a. Such a dependence graph is made single sink
by adding synthetic nodes as needed. We propose to use two cost metrics: (1) scost: cost of evalu-
ating an operation in scalar fashion; (2) vcost is the cost of evaluating some operations in a vector
fashion – the number of such operations can be determined by the vector length of the underlying
machine2.

Our proposed algorithm starts a bottom-up pass of the dependence graph to compute the costs
of evaluating various operations in the dependence graph in both scalar and vector fashion, choos-
ing the minimum cost along the traversal path. The overall cost of the sink node denotes the overall
cost of generating vector code. A second top-down pass of the dependence graph is made to iden-
tify those operations that need to be evaluated in scalar fashion and those operations that need to
be evaluated in vector fashion. Finally, the vector code for the dependence graph is automatically
generated by making a bottom-up pass.

The above algorithm needs to pay special attention to dependence graphs that are DAGs rather
than trees. Several approaches have been proposed in the literature to break a DAG into trees and
then compute the overall cost of each tree. We can easily adapt our proposed method to such
scenarios.

The complexity of the above algorithm is bounded by three passes over the dependence graph.

1The cost of each IR instruction is computed relative to the cost of an integer-add IR operation.
2RC provides such information to TAO.

Bibliography

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[2] Frances E. Allen, John Cocke, and Ken Kennedy. Reduction of operator strength. In Steven S.
Muchnick and Neil D. Jones, editors, Program Flow Analysis: Theory and Applications, pages
79–101. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[3] Randy Allen and Ken Kennedy. Optimizing compilers for modern architectures: a dependence-
based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[4] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman. Finding effective compilation sequences.
In Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on Languages, compilers, and
tools for embedded systems, pages 231–239, New York, NY, USA, 2004. ACM.

[5] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance coun-
ters with flow and context sensitive profiling. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 85–96, NY, NY, USA, 1997. ACM.

[6] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In 3rd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 39–50, june 1991.

[7] U. Banerjee. Unimodular transformations of double loops. In Advances in Languages and
Compilers for Parallel Processing, pages 192–219, Irvine, August 1990.

[8] C. Bastoul. Code generation in the polyhedral model is easier than you think. In IEEE Intl.
Conf. on Parallel Architectures and Compilation Techniques (PACT’04), pages 7–16, Juan-les-
Pins, september 2004.

[9] C. Bastoul. Improving Data Locality in Static Control Programs. PhD thesis, University Paris
6, Pierre et Marie Curie, December 2004.

[10] Cedric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, , and Olivier Temam. Putting
polyhedral loop transformations to work. In Workshop on Languages and Compilers for Par-
allel Computing (LCPC’03), pages 23–30, 2003.

[11] Cédric Bastoul and Paul Feautrier. Adjusting a program transformation for legality. Parallel
processing letters, 15(1):3–17, March 2005.

[12] J. A. Benediktsson, P. H. Swain, and O. K. Ersoy. Neural network approaches versus statistical
methods in classification of multisource remote sensing data. IEEE. Trans. Geosci. andRemote
Sens., 28(4):540, 1990.

125

126 BIBLIOGRAPHY

[13] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam, Atanas Roun-
tev, and P. Sadayappan. Automatic transformations for communication-minimized paral-
lelization and locality optimization in the polyhedral model. In International Conference on
Compiler Construction, pages 132–146, 2008.

[14] Uday Bondhugula, Albert Hartono, J. Ramanujan, and P. Sadayappan. A practical automatic
polyhedral parallelizer and locality optimizer. In ACM SIGPLAN Programming Languages
Design and Implementation (PLDI ’08), 2008.

[15] Preston Briggs and Keith D. Cooper. Effective partial redundancy elimination. In Proceedings
of the ACM SIGPLAN ’94 Conference on Programming Language Design and Implementation,
pages 159–170, June 1994.

[16] Michael Burke and Linda Torczon. Interprocedural optimization: Eliminating unnecessary
recompilation. ACM Transactions on Programming Languages and Systems, 15(3):367–399,
July 1993.

[17] C Language Standard, ISO/IEC 9899:TC3, 2007.

[18] Candl, the Chunky Analyzer for Dependence in Loops. Available at
http://cse.ohio-state.edu/ pouchet/software/pocc.

[19] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and Olivier
Temam. Rapidly selecting good compiler optimizations using performance counters. In Pro-
ceedings of the International Symposium on Code Generation and Optimization, pages 185–
197, Washington, DC, USA, 2007. IEEE Computer Society.

[20] John Cavazos and Michael F. P. O’Boyle. Method-specific dynamic compilation using logistic
regression. ACM SIGPLAN Notices, Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, 41(10):229–240, 2006.

[21] CLooG, the Chunky Loop Generator. Available at
http://www.cloog.org.

[22] Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dotsenko. Scalability anal-
ysis of SPMD codes using expectations. In ICS ’07: Proc. of the 21st annual International
Conference on Supercomputing, pages 13–22, NY, NY, USA, 2007. ACM.

[23] Keith D. Cooper, Jason Eckhardt, and Ken Kennedy. Redundancy elimination revisited. In
Proceedings of the 17th International Conference on Parallel Architectures and Compilation
Techniques (PACT 08), pages 12–21, October 2008.

[24] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steve Reeves, Devika Subramanian,
Linda Torczon, and Todd Waterman. Exploring the structure of the space of compilation
sequences using randomized search algorithms. Journal of Supercomputing, 36(2):135–151,
2006.

[25] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves, Devika Subrama-
nian, Linda Torczon, and Todd Waterman. ACME: Adaptive compilation made efficient. In
Proceedings of the 2005 ACM SIGPLAN Conference on Languages Compilers and Tools for Em-
bedded Systems (LCTES 05), pages 69–77, June 2005.

[26] Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with inline substitution.
Software—Practice and Experience, 21(6):581–601, June 1991.

BIBLIOGRAPHY 127

[27] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced code
space using genetic algorithms. Proceedings of the ACM SIGPLAN workshop on Languages,
compilers, and tools for embedded systems, pages 1–9, 1999.

[28] Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. Operator strength reduction.
ACM Transactions on Programming Languages and Systems, 23(5):603–625, September 2001.

[29] Keith D. Cooper and Linda Torczon. Engineering a Compiler. To appear., 2011.

[30] Ron Cytron and Jeanne Ferrante. What’s in a Name? Or the Value of Renaming for Parallelism
Detection and Storage Allocation. Proceedings of the 1987 International Conference on Parallel
Processing, pages 19–27, August 1987.

[31] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid
Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[32] Paul J. Drongowski. Instruction-based sampling: A new performance analysis technique
for AMD family 10h processors. http://developer.amd.com/Assets/AMD_IBS_paper_EN.
pdf. Last accessed: Dec. 16, 2009., November 2007.

[33] W. H. Farrand, E. Merényi, , J.F. Bell III, J. R. Johnson, S. Murchie, and O. Barnouin-Jha. Class
maps of the mars pathfinder landing site derived from the imp superpan: Trends in rock dis-
tribution, coatings and far field layering. The International Journal of Mars Science and Explo-
ration, 4:33–55, July 11 2008.

[34] P. Feautrier. Some efficient solutions to the affine scheduling problem, part II: multidimen-
sional time. Intl. J. of Parallel Programming, 21(6):389–420, dec 1992.

[35] Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-overhead call path profiling of
unmodified, optimized code. In Proc. of the 19th annual International Conference on Super-
computing, pages 81–90, New York, NY, USA, 2005. ACM Press.

[36] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler,
and Olivier Temam. Semi-automatic composition of loop transformations. IJPP, 34(3):261–
317, June 2006.

[37] M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the polytope model. In Intl. Conf.
on Parallel Architectures and Compilation Techniques (PACT’98), pages 106–111, 1998.

[38] B. Hammer and Th. Villmann. Generalized relevance learning vector quantization. Neural
Networks, 15:1059–1068, 2002.

[39] Albert Hartono, Muthu Baskaran, Cédric Bastoul, Albert Cohen, Sriram Krishnamoorthy,
Boyana Norris, J. Ramanujam, and P. Sadayappan. Parametric multi-level tiling of imper-
fectly nested loops. In International Conference on SuperComputing (ICS’09), 2009.

[40] E. S. Howell, E. Merényi, and L. A. Lebofsky. Classification of asteroid spectra using a neural
network. Jour. Geophys. Res., 99(E5):10,847–10,865, 1994.

[41] F. Irigoin and R. Triolet. Supernode partitioning. In ACMSIGPLANPrinciples of Programming
Languages, pages 319–329, 1988.

128 BIBLIOGRAPHY

[42] Ajay Joshi, Aashish Phansalkar, Lieven Eeckhout, and Lizy John. Measuring benchmark sim-
ilarity using inherent program characteristics. IEEE Transactions on Computers, 55(6):769–
782, 2006.

[43] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Frontiers’95
Symposium on the frontiers of massively parallel computation, McLean, 1995.

[44] Jinwoo Kim, Rodric M. Rabbah, Krishna V. Palem, and Weng-Fai Wong. Adaptive compiler
directed prefetching for epic processors. In PDPTA, pages 495–501, 2004.

[45] Kathleen Knobe and Vivek Sarkar. Array SSA form and its use in Parallelization. In POPL
’98. Proceedings of the 25th ACM SIGPLAN-SIGACT on Principles of programming languages,
January 1998.

[46] M.J. Mendenhall and E. Merényi. Relevance-based feature extraction for hyperspectral im-
ages. IEEE Trans. on Neural Networks, 19(4):658–672, April 2008.

[47] E. Merényi. Precision mining of high-dimensional patterns with self-organizing maps: Inter-
pretation of hyperspectral images. In Quo Vadis Computational Intelligence: New Trends and
Approaches in Computational Intelligence (Studies in Fuzziness and Soft Computing, Vol 54,
P. Sincak and J. Vascak Eds.). Physica Verlag, 2000.

[48] E. Merényi, B. Csató, and K. Taşdemir. Knowledge discovery in urban environments from
fused multi-dimensional imagery. In P. Gamba and M. Crawford, editors, Proc. IEEEGRSS/IS-
PRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (URBAN 2007).,
pages 1–13, Paris, France, 11–13 April 2007. Invited.

[49] E. Merényi, W. H. Farrand, R. H. Brown, Th. Villmann, and C. Fyfe. Information extraction
and knowledge discovery from high-dimensional and high-volume complex data sets through
precision manifold learning. In Proc. NASA Science Technology Conference (NSTC2007), vol-
ume ISBN 0-9785223-2-X, page 11, College Park, MD, June 19 – 21 2007.

[50] E. Merényi, W. H. Farrand, L.E. Stevens, T.S. Melis, and K. Chhibber. Mapping Colorado River
ecosystem resources in Glen Canyon: Analysis of hyperspectral low-altitude AVIRIS imagery.
In Proc. ERIM, 14th Int’l Conference and Workshops on Applied Geologic Remote Sensing, 4–6
November, 2000, Las Vegas, Nevada, 2000.

[51] E. Merényi, K. Tasdemir, and W. Farrand. Intelligent information extraction to aid science
decision making in autonomous space exploration. In W. Fink, editor, Proceedings of DSS08
SPIE Defense and Security Symposium, Space Exploration Technologies, volume 6960, page
69600M, Orlando, FL, Mach 17–18 2008. SPIE. Invited.

[52] E. Merényi, K. Tasdemir, and L. Zhang. Learning highly structured manifolds: harnessing the
power of SOMs. In M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Similarity
based clustering, Lecture Notes in Computer Science, LNAI 5400, pages 138–168. Springer-
Verlag, 2009.

[53] David Mosberger-Tang. libunwind. http://www.nongnu.org/libunwind.

[54] David Patterson. “The Parallel Revolution Has Started: Are You Part of the Solution or Part of
the Problem?”. Talk at Rice University, February 2010.

[55] Pluto, a Practical Automatic Polyhedral Parallelizer and Locality Optimizer. Available at
http://pluto.sourceforge.net.

BIBLIOGRAPHY 129

[56] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos. Iterative optimization
in the polyhedral model: Part II, multidimensional time. In ACMSIGPLANConf. on Program-
ming Language Design and Implementation (PLDI’08), pages 90–100. ACM Press, 2008.

[57] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops from polyhedra.
Intl. Journal of Parallel Programming, 28(5):469–498, october 2000.

[58] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for multicom-
puters. Journal of Parallel and Distributed Computing, 16(2):108–230, 1992.

[59] Rice University. HPCToolkit performance tools. http://hpctoolkit.org.

[60] L. Rudd and E. Merényi. Assessing debris-flow potential by using AVIRIS imagery to map
surface materials and stratigraphy in cataract canyon, Utah. In R.O. Green, editor, Proc. 14th
AVIRIS Earth Science and Applications Workshop, Pasadena, CA, May 24–27 2005.

[61] Vivek Sarkar. Automatic Selection of High Order Transformations in the IBM XL Fortran Com-
pilers. IBM Journal of Research and Development, 41(3), May 1997.

[62] Vivek Sarkar and Radhika Thekkath. A General Framework for Iteration-Reordering Loop
Transformations. Proceedings of the ACMSIGPLAN ’92Conference onProgramming Language
Design and Implementation, pages 175–187, June 1992.

[63] Vivek Sarkar and Radhika Thekkath. A general framework for iteration-reordering loop trans-
formations. In Proc. of the ACM SIGPLAN conference on Programming language design and
implementation (PLDI’92), pages 175–187. ACM, 1992.

[64] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. Meta op-
timization: improving compiler heuristics with machine learning. ACM SIGPLAN Notices,
Proceedings of the 2003 Conference on Programming Languages, Design and Implementation,
38(5):77–90, 2003.

[65] Nathan R. Tallent and John Mellor-Crummey. Effective performance measurement and anal-
ysis of multithreaded applications. In Proc. of the 14th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pages 229–240, New York, NY, USA, 2009. ACM.

[66] Nathan R. Tallent, John Mellor-Crummey, and Michael W. Fagan. Binary analysis for mea-
surement and attribution of program performance. In Proc. of the 2009 ACM SIGPLAN Con-
ference onProgramming LanguageDesign and Implementation, pages 441–452, New York, NY,
USA, 2009. ACM.

[67] Nathan R. Tallent, John Mellor-Crummey, and Allan Porterfield. Analyzing lock contention
in multithreaded applications. In Proc. of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2010.

[68] Nathan R. Tallent, John M. Mellor-Crummey, Laksono Adhianto, Michael W. Fagan, and Mark
Krentel. Diagnosing performance bottlenecks in emerging petascale applications. In Proc. of
the 2009 ACM/IEEE Conference on Supercomputing, 2009.

[69] T. Villmann, E. Merényi, and B. Hammer. Neural maps in remote sensing image analysis.
Neural Networks, 16:389–403, 2003.

[70] M. Wolfe. High performance compilers for parallel computing. Addison-Wesley Publishing
Company, 1995.

130 BIBLIOGRAPHY

[71] Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London and The
MIT Press, Cambridge, Massachusetts, 1989. In the series, Research Monographs in Parallel
and Distributed Computing.

[72] L. Zhang, E. Merényi, W. M. Grundy, and E. Y. Young. An SOM-hybrid supervised model
for the prediction of underlying physical parameters from near-infrared planetary spectra.
In R. Miikkulainen, editor, Advances in Self-Organizing Maps, Proc. 7th Intl Workshop on
Self-OrganizingMaps (WSOM 2009, volume 5629 of Lecture Notes in Computer Science, LNCS,
pages 362–371, St. Augustine, FL, June 8–10 2009. Springer-Verlag.

[73] L. Zhang, E. Merényi, W. M. Grundy, and E. Y. Young. Inference of surface parameters from
near-infrared spectra of crystaline H2O ice with neural learning. Publications of the Astro-
nomical Society of the Pacific, February 2010. Submitted.

