Portable Techniques to Find Effective Memory
Hierarchy Parameters

Keith Cooper Jeffrey Sandoval
Rice University Cray, Incorporated
Houston, Texas St. Paul, Minnesota

Abstract—Application performance on modern microproces- a parameter can be considered an upper bound on the usable
sors depends heavily on performance related characterists of fraction of the physical resource.
the underlying architecture. To achieve the best performane, an In the best case, effective capacity is equal to physical

application must be tuned to both the target-processor famy ity F | t mi the aféect
and, in many cases, to the specific model, as memory-hierargh capacity. -or example, on most mICroprocessors, the ¢

parameters vary in important ways between models. Manual L1 data cache capacity is identical to the physical capacity,
tuning is too inefficient to be practical; we need compilers hat because th&1 data cache is not shared with other cores, it
perform model-specific tuning automatically. is separate from thel instruction cache, and it is virtually
To make such tuning practical, we need techniques that mapped. In contrast, an2 cache for the same architecture
can automatically discern the critical performance parameers . . : .
of a new computer system. While some of these parametersm'ght be shared among cores. It might CoQtaln the images
can be found in manuals, many of them cannot. To further Of all those coresL1 instruction caches. It might hold page
complicate matters, compiler-based optimization should arget tables, loaded int€2 by hardware that walks the page table.
the system’s behavior rather than its hardware limits. Effective Each of these effects might reduce the effectiv& cache
cache capacities, in particular, can be smaller than the hatware ¢anacity: modern commodity processors exhibit all three.
limits for a numbgr of reasons, such as sharllng between cores A compiler that blocks loops to improve memory access
between instruction and data caches. Physical address maing . . ! .
can also reduce the effective cache capacity. times should achieve better results using these effectiche
To address these challenges, we have developed a suite o$izes than it would using the physical hardware limits beeau
portable tools that derive many of the effective parametersof the effective number captures the point on the curve of acces
g:?trr?ein?ggshrﬁi:arlgc?éngﬁr;z\;vrokrsktgugggl Ozne‘?;h'g”n%e“r?]gro‘tsprsi?ém cost versus capacity where access costs begin to rise. The
We separate the design of a reference s¥ring that eIicitsya gpific Compller’s goal should be to tile the Computatlor_l Into th{;\t
behavior from the analysis that interprets that behavior. We fraction of cache that does not cause access time to rise.
present a novel set of reference strings and a new robust appach ~ Several authors have advocated the use of effective casmacit
to analyzing the results. We present experimental validatin on rather than physical capacities [1]-[3].
a collection of 20 processors. This paper describes techniques that measure effective ca-
pacities for a single-threaded application, running on & qu
escent system—that is, no other tasks are making significant
Application performance on today’s multi-core processotemands on the memory system. While this scenario is the best
is often limited by the performance of the system’s memowase for effective capacities, it presents significantlehges.
hierarchy. To achieve good performance, the code must Be obtain clean data, the techniques must carefully isolate
carefully tailored to the detailed memory structure of trgét specific behaviors, separating, for example cache misees fr
processor. That structure varies widely across differectiia T8 misses. They must also reduce the impact of transient
tectures, even for models of the samsa. Thus, performance pehavior, such as interference from autonomous processes
is often limited by the compiler’s ability to understand nebd such as operating system daemons. To produce consistent
specific differences in the memory hierarchy and to tailer thesults, the data requires interpretation. That analysistm
program’s behavior accordingly. be automatic and robust if the tools are to be portable. The
This paper presents a set of techniques to discover, efels have been tested on across a broad collection of system
pirically, the capacities and other parameters of the warioSection VI shows results from twenty systems.
levels in the data memory hierarchy, both cache and. This paper does not address the problem of finding the
Our toolset computesffective values for the various memory- effective parameters seen by a single thread in a multideca
hierarchy parameters that it measures, rather than fintieg tomputation, whether on one core or many cores. Rather,
full hardware capacity. We defingffective capacity to mean these techniques lay the groundwork for a careful invesitiga
the amount of memory at each level that an application can usfethat phenomenon: carefully validated techniques for-mea
before the access latency begins to rise. The effectiveevialu surement and analysis of the simpler single-thread behavio
Neither does the paper address the problem of measuring
This work was funded by the Defense Advanced Projects Reséegency instruction cache capacity, unless that level of cacheasesh

(DARPA) through Air Force Research Laboratory Contract FA865@09 b he i . dd he hi hi
7915. The opinions and findings in this document do not necisseflect etween the instruction an ata cache hierarchies.

the views of either the United States Government or Rice &fgity.

I. INTRODUCTION

This paper builds on a long line of prior work, described in example, colleagues showed us an example where X-

Section Il. It extends that work in several important wayar O RAY [9] computed an_1 associativity of 9 rather than
focus is on robust micro-benchmarks and automated analysis 8, with the result that it reported anl capacity that was
to interpret the results. The microbenchmarks, descrilped i % of the physical value [10].

Section 1V, use carefully designed reference strings ti80 e or more of these issues arose with each prior system
and measure specific memory hierarchy behaviors. They adgpjt we tested. These shortcomings motivated our currént se
a disciplined approach to time measurement that providgsiools. We have built a set of tools that measure a broad
clean, reproducible data. The automated analysis, destiib \ariety of cache andLs parameters, that are portable across
Section V, incorporates a sophisticated multi-step tepiato 5 variety of systems, that provide accurate results foreshar
filter, smooth, and interpret the data. It produces a co#msist eyels in the memory hierarchy, that include a robust autama
interpretation of the micro-benchmark results across magya\ysis without arbitrary threshold values, and thatesébr

systems. Finally, Section VI describes our experiencegqusigach parameter independently to avoid compounding errors.
the tools to characterize more than twenty distinct pramsss

and processor models. I1l. LITERATURE REVIEW

Il. WHY NoT USE EXISTING TOOLS? All memory characterization work appears to derive from
Saavedra and Smith [8]. They use a Fortran benchmark to
This problem is not new. Prior work has described severghserve memory behavior. It measures the time needed to
systems that attempt to characterize the memory hierafghy [stride through an array of lengt with a stride ofs. They
[9]. Our goal has been to build a set of tools that derive t'“g%nerate plots with varied values df and s and manually
effective memory-system parameters in an automated Wghterpret the results to determine the cache and capac-
From our perspective, previous systems suffer from sevefigl |inesize (pagesize), and associativity. They use alsin
specific flaws. benchmark to determine all characteristics, which reguire
1) We found no single set of tools that measured the fudbreful disambiguation between various effects. In cattra
set of cache andLB parameters that a compiler needsour work uses distinct access patterns for each effect died re
With some of the systems, the papers lay out techniques a robust automated analysis that interprets resultsddr b
for measuring higher levels of cache orB that the physically and virtually mapped caches.
distributed software does not implement. Several of theIn | nbench, McVoy and Staelin replaced array access with
systems rely on a human to interpret the results. a linked list traversal to allow indirect and randomizedessc
2) The prior tools are not easily portable to current m&atterns [7]. This ad_/ance was necessitated b_y improvesment
chines. Some rely on system-specific features such iBhardware prefetching. Our tools leverage this approach.
superpages or hardware performance counters to simln X-RAy, Yotov et al. addressed both algorithmic and
plify the problems. Others were tested on older systerf§plementation issues in prior work [9], [11]. XAR uses a
with shallow hierarchies; they and produce odd angingle test to detect cache capacity and associativityyipgo

inaccurate results on modern processors. Our tools liff{e cache to determine ishape. While that works reasonably
themselves to portable code withPosix calls. well on an unshared cache, such ad ardata cache, features

3) Sharing in the memory hierarchy complicates the pms(ych as sharing or a victim cache can create unexpectetstesul

e of bolh mesurement and anayiscrough s (G5 150 (s Spervages 0 s ohycal
the tools need to model it and account for it explicitly bp P porta)
. . : [n, contrast, our tools measure each parameter separdiely; t
The techniques in this paper address one part of that . .
problem—understanding behavior. same tools handle physically and virtually mapped caches.
Both Servet [6] and P-Ry [5] extend prior work to

4) Our own experience has shown us that robust analysis@fracterize sharing and communication aspects of multi-

the data is difficult. For example, several prior systtMgyre clusters. These approaches do not address the issues
rely on threshold values to detect transitions in thga; we tackle in this paper. Our work on improving cache
data—for example, an increase in access time @0% naracterization methodology from the perspective of glsin
indicates a new level in the hierarchy. As systems evolygreaq is orthogonal to the work on characterizing shared
and models proliferate, such threshold-based techniqugsoyrces. This paper provides a principled foundation for
invariably fail automatic resource characterization, which is necessary f

5) Finally, previous tools try to solve for multiple param+{uture extensions to multi-core architectures.
eters at once. When the code works, this approach is
fine. However, if the code finds a wrong answer for IV. PORTABLE MICRO-BENCHMARKS

one parameter, it inevitably is wrong for the others. For This section describes the micro-benchmarks that we de-

N _ . veloped to measure specific behaviors. The micro-benchsmark
We have also developed tools that derive a graph of sharlagareships

between cores and between the instruction cache and ddtae bararchies. 'nCIIUd.e a general test for effective (.;aChe capacity at adle
Space limitations prevent us from describing those toolghis paper. a similar test for effectivaLB capacity at all levels,and a test

baseline— time for the G(2,LB,0) reference string

for n+ 2 to MaxAssociativity
fork + LB to UB
t« time for the G(n,k,0) reference string
if (t > baseline)
L1Assoc—n-1
L1Size+ L1Assocx k
break out of both loops

for offset« 1 to pagesize
t « time for the G(n,k,offset) reference string

if t = baseline

describe how to run and time a reference string in subsection
below. The test takes four inputs: a lower bound on cache size
LB; an upper bound on cache siZéB; an upper bound on
associativity MaxAsso¢ and theos pagesize fronsysconf .

The intuition behind this parameter sweep is simple. Con-
sider a direct-mapped cache. The algorithm first tries the se
of reference strings fron(2,LB,0) to G(2,UB,0). When k
reaches thé.1 cache size, the two locations in the reference
string will map to the same cache location and each reference
will miss in the L1 cache. That effect raisesabove base-
line. The code records cache capacity and associativity, and
terminates the loop.

With a set associative cache, the sweep will continue until
n is one greater than the associativity gnd- 1) -k equals the
cache capacity. At that point, the locations in the refeeenc
string all map to the same set and, because there are more
references than ways in the set, the references will begin to
for cache linesize at all levels. We rely on the operatingteyn miss. For smaller values af, all the references will hit in
pagesize reported by theosix sysconf interface. cache and the time will match the baseline time.

BecauselLl data cache linesize is useful to reduce spatial The second part of the algorithm uses the same effect to
locality in the general tests, our tools use a specializetltte find linesize. It already has values for and k that match
find L1 cache parameters. The parameters are later confirnggghacity and associativity. It runs a parameter sweep on
by the more general tests. This specialized testgépetest, is the reference strings(n,k,0), Wheno, the offset in the last
based on ideas found in XAR [9] running in an infrastructure block, reaches the linesize, the last access in the strings ma
that we developed to obtaining accurate measurementsintp a different set in cache, atl references hit in cache, and
measures capacity, associativity, and linesize. Eitharisg the measured time returns baseline
or physical address mapping can defeat ¢ap test, which Of course, both steps assume that we can accurately
makes it unsuitable for caches beyond thecache. measure the running time of the reference string and that

All of the tests rely on a standard compiler. We use compulsory misses at the start of that run do not matter.
standardrosix interfaces to build an accurate timer and aRunning a Reference Sring To measure the running time for
allocator that returns page-aligned arrays. (All of ourtstesa reference string, the tool must instantiate the stringvealtd
use page-aligned arrays to eliminate one source of vamiatigs references enough times to obtain an accurate timing. Ou
between runs.) tools build the reference string into an array of pointeia th
contains a circular linked list of the locations. (& we use

A Gap Test an array ofvoi d**.) The code to run the string is simple:
We describe the gap test first because it exposes many of

the complications that arise in building micro-benchmatks !
expose memory hierarchy behavior. The gap test is simple and ~ Start« timer()
intuitive. It relies directly on hardware effects causedtbg while (loads --> 0)
combination of capacity and associativity. p< *p;

The gap test accesses a seh @dcations spaced a uniforkn finish+ timer()
bytes apart. We call this setreference string. We describe the elapsed— finish - start

reference strings for the gap test with a tu@ig,k,0) wheren _ _
is the number of locations to accekss the number of bytes The implementation unrolls the loop by a factor of ten to make

between those locations, ands an offset added to the start0op overhead small relative to the memory access costs. The
of the last location in the set. The reference striig,k,0) tool selects a number of accesses that is large e_nough so that
generates the following locations: the fastest test(2,LB,0), runs for at least 1,000 timer ticks.
Timing a Reference Sring The loop that runs the reference
string computes elapsed time using a set of calipers, the cal
0 k 2k (n—1)k to timer, placed immediately outside the minimal timing loop.
G(n,k,4) would move then” location out another four bytes. In practice, obtaining good times is difficult. Our task isdea
As its first step, the gap test finds cache capacity af@pPre difficult by the desire to run on arbitraPpsix systems
associativity. It uses the reference strings to conductri@sse in multiuser mode (e.g., not in single-user mode). To obtain
of parameter sweeps ovay k, ando, Organized as shown in sufficiently accurate timings in this environment, we use a
Figure 1. It measures the time taken to run each refererfd@ple but rigorous discipline.
string. It conducts a simple analysis on those results. We

L1LineSize = offset - 1
break out of loop

Fig. 1. Pseudocode for the Gap Test

loads< number of accesses

| 1 | 128
= page ' L Cacr|1e-OnIy J— -
1line _

TLB-Test ———----
FrTA~"TA T~~~]

[«2)
~

w
N
T

,,,,,,,,,

™

‘J

™~

™ 1 1 1 1 1
™~

‘J

™~

=

¥~ [A— [~ [A— [*— [*—]

©
T

Latency (cycles)
B
o
T

¥ T [— [A— [~ [_— %]

N b
T
T
|
|
|
I
|
|
|
1
i

K [Fm X X [[~ [—]

TOWS Y =TT — % — [* — % — [—]| 32KB 256KB 2MB 8MB 64MB

Data Footprint

F— TR~ [~ [~ [*A— [*— [*—]

¥ T [— [A— [— [_— [A—]

P TR~ R~ %~ %~ [%— []

Fig. 3. Intel E5530 response, log-log plot

rather than virtual addresses. Each of these factors casecau
the gap test to fail. It works onl precisely becausel data
caches are core-private and virtually mapped, and pagestabl
are locked inta_2 or L3 cache.

Fig. 2. Cache-Only Reference String

First, we use an accurate timer. It calls tlrROSIX
get ti meof day routine and combines the resulting_sec
andt v_usec values to produce a double-precision floatingd. Cache-Only Test
point value. We scale the number of accesses to the apparenthe cache-only test avoids the weaknesses that the gap test
resolution of this timer, determined experimentally. exhibits for upper level caches by solving for cache capacit

Second, we run many trials of each reference string and kegpisolation from associativity. It also isolates cacheeefs
the minimum measured execution time. We want the shortégim TLB effects. It reuses the infrastructure from the gap test
time for a given reference string; outside interferenceifeats to run and time the cache-only reference string.
itself in longer times. To find the shortest time, we run tret te The cache-only reference string(k), minimizes the impact
repeatedly until we have not seen the minimum time changeTtLe misses. The parametkispecifies the reference string’s
in the lastTrials runs. A typical value forTrials is 100. memory footprint. The generator also usesdlsgpagesize and

Finally, we convert the measured times into cycles. Wen estimate of 1 linesize. In practicel 1 linesize is used to
carefully measure the time taken by an integer add aadcentuate the system response by decreasing spatiatylocal
convert the measured time into integer-add equivalenisunito any value greater thai zeof (voi d*) works.

Specifically, we multiply to obtain nanoseconds, divide by t Givenk, theL1 linesize, and thes pagesize, the generator
number of accesses, and round the result to an integral numibailds an array of pointers that spakgytes of memory. The

of integer-add equivalents. This conversion eliminates tlyenerator constructs an index set, the column set, tharsove
fractional cycles introduced by amortized compulsory méssone page and accesses one pointer in each line on the page.
and loop overhead. It constructs another index set, the row set, that contdias t

Experimental validation on a broad variety of machinestarting address of each page in the array. It shuffles beth th
shows that these techniques produce accurate resultsfbt th column and row sets into random order.
cache characteristics of a broad variety of architectuBee(To build the linked list, it iterates over the pages in the
Section VI). Our other tests use the same basic techniquew set. Within a page, it links together the lines in the orde
with different reference strings. specified by the column set. It links the last access in one
Reducing the Running Time Figure 1 suggests that thePage to the first access in the next page. If pagesize does not
parameter sweeps sample the space at a fine and uniféiide k, it generates a partial last row in random order. The
grain. We can radically reduce running time by sampling fewéast access then links back to the first, to create the circula
points. On most systems, for example, the size of the gap,hst. FlgL_Jre _2 shows the cache-only r_eference strmg YVIthOU
will be an integral multiple of kB. Associativity is unlikely randomization;in practice, we randomize the order witkiore

to be odd. Linesize is likely to be a power of two. The curred@W and we randomize the order of the the rows. .
implementation usetB = 1kB, UB = 16m8, and an initial To measure cache capacity, the test uses this referenuog stri
1KB increment that increases in stepskagrows? It testsn N @ simple parameter sweep:

for the values 2 and odq numbers from 3 to 33. IF vages fork «— LBto UB

over powers of two fronsi zeof (voi d*) to pagesize. t,, < time forC(k)

Limitations The gap test only works if it can detect the actuaf,he implementation, of course, is more complex, as destribe
hardware boundary of the cache. We do not apply the gap testSection IV-A. The sweep produces a series of valigs

. N
beyondL1 for several reasons. Higher levels of cache tend t at form a piecewise linear function describing the preoes

be shared, either between I-cache and D-cache, or betwggghe response

(r:]prﬁs, ?r b(l)th‘ (ﬁperﬁ!nﬁ sylster?s I?Ck pﬁgefiable entri;s "N The cache only line in Figure 3 shows the results of the
Igher-ievel caches. Higher levels of cache often use p ys'cache-only test on an Intel E5530 Nehalem. Note the sharp

’ _ L _ transition for theL1 cache at 3B and the softer transitions
When the test samples the interval fr@t to 2"+, it uses an increment . .
of max(1024,27~2). Thus, forn > 12, it tests2”, 27+1, and three points for L2 and L3 caches. Our analysis reports an effectiz

between, space®”~2 bytes apart. For smallet, it tests at k8 intervals. ~ capacity of 224&«B from this dataset. (See Table I.)

| 1page | —a— T(L,k)

(%]
1line o = Tew
g | C(k)
e —
A TLB2 | - o e B
A TLBL | -------- kLo
4
k —~
rows - 14
A T T T T
™ \ 1 L L2 L3 Lines
— |
X —I Fig. 5. Memory Hierarchy Search Space
Fig. 4. TLB-Test Reference String pagesize- linesize, it jumps from one page to two pag€gk)

forms a step function that degenerates to a line due to the log

As long as pagesize is large relative to linesiZ&k) log form of the plot. In contrast, theLB string, T(1,K), has a
produces clean results that isolate the cache behavioral dfootprint that rises diagonally, at one page per line.
consistent conclusions from the data, however, requires th The plot predicts points where performance might change.
analytical technigues explained in Section V. When the line for a given reference string crosses a cache

or TLB boundary in the memory hierarchy, performance may
C. TLB Test . . : ;
jump. With C(k), we see a jump when it crosses cache

The TLB test uses a reference string that isolates be- poundaries but not when it crossess boundaries—precisely
havior from cache misses and runs it in the same infrastreictyyecause the order of access amortizes the misses. Of
from the earlier tests. It produces a piecewise linear fonct course, if the hardware responds with a rise in access time
that describes the processorss response. Again, the datapefore the actual boundary, the test shows that point as the
must be subjected to further analysis. effective boundary.

TheTLB reference stringT(n,k), accesses pointersin each \when theTLB line crosses a cache boundary, the rise in
page of an array of bytes. To construct(1,k), the generator measured time is indistinguishable from the responserisa
builds a column index set and a row index set as in the cachige plot, however, gives us an insight that allows us to rule
only test. It shuffles both sets. To generate the permutationout false positive results. The line fa2,k) parallels the line
iterates over the row set choosing pages. It chooses a singleT(1,k), but is shifted to the right. Iff(1,k) shows aTLB
line within the page by using successive lines from the Cﬂlumesponse ak pages, theT(Z’k) shows aTLB response ak
set, wrapping around in a modular fashion if necessary. TRgges. Becaus&2,k) uses twice as many lines rtpages as
result is a string that accesses one line per page, and spreﬁq,k), a false positive response caused by the cachglifk)
the lines over the associative sets in the lower level cach@gll appear at a smaller size ifi(2,k).

Figure 4 showsT(1,k- pagesize), without randomization. To detect false positives, tHeLB test runs both tha(1,k)

For n>1, the generator uses lines per page, with a gnd T(2k) strings. It analyzes both sets of results, which
variable offset within the page to distribute the accessggoduces two lists of suspect points in ascending order by
across different sets in the caches and minimize assdtyativ. |f T(1,k) shows a rise ax pages, buff(2,k) does not, then
conflicts. The generator randomizes the full set of refegency is a false positive. If botfT(1,k) and T(2,k) show a rise ak
both to avoid the effects of a prefetcher and to avoid SumSSpages, we report the transition agiB size. This technique
accesses to the same page. eliminates most false positive results.

The TLB-Test line in Figure 3 showsTLB test results for stjll, a worst-case choice of cache ands sizes can fool
an Intel Nehalem E5530 processor. For thes data, the X- this test. If T(1,k) maps intom cache lines ak pages, and
axis represents total footprint covered by thes, or pages x T(2,k) maps into2:m cache lines ax pages, and the processor
pagesize. Notice the sharp transitions at 266 and 2vB. has caches witim and 2-m lines, both reference strings will
Eliminating False Positives The cache-only test hides thediscover a suspect point atpages and the current analysis
impact of TLB misses by amortizing those misses over manyill report a TLB boundary atx pages. Using more tests,
accesses. Unfortunately, theB test cannot completely hidee.g., T(3,k), T(4,k), and T(5,k), could eliminate these points.
the impact of cache because any action that amortizes catih@ractice, we have not encountered this problem.
misses also partially amortizesLB misses. To see this, o
consider the log-log plot in Figure 5 which depicts the set &f- Linesize
feasible memory-footprints that we can test. The x-axisssho The linesize test operates on a different paradigm than the
the number of lines in a given footprint, while the y-axiswsiso cache-only test and theB test. It cannot rely on effects from
the number of pages. Labeled dotted lines show boundariesaséociativity, as did the gap test, for two reasons. First, a
cache andrLB levels. the response curves from the cache-only test show, the micro

Consider the footprint of the cache-only strifg(k), ask benchmark may not be able to use the full cache; using a
runs from one to largeC(1) generates the footprint (1,1) insmaller footprint will fail to trigger the predictable asia-
the plot. C(2) generates (1,2), and so on. Whkrreaches tivity effects. Second, higher level caches may be physical

drops below the baseline. The effective linesize, thengisak

to thes for which the latency of.(n,s) is less than the latency

of the baselinel.(n,sizeof(void*)). Of course, a system with
linesize equal to wordsize would produce the same response

1-word
stripe

2-word

stripe for all values ofs. We have not encountered such a system.
For the linesize test to function properly both patterns 4 an

4-word B must map to the same cache lines. On a virtually mapped

stripe cache we can just create two adjacent arrays for A and B,

Bl = Accessed word both of lengthn. However, physically mapped caches do not
B = Accessed cache line guarantee that the arrays map contiguously into the cache.
I™I— Actual cache line Our key insight is that physically mapped caches provide
o contiguous mappingvithin each page.

To leverage this observation, the test generate the access
patterns at gpagesize granularity. It allocates2* n/pagesize
mapped, which also disrupts the associativity behaviousTh pages and randomly fills half of them with pattern A and half
the linesize test relies on spatial locality and conflictsass with pattern B. Because the reference string spans twice as

The test generates a reference stiifg,s), wheren is the many pages as should fit in cache, on aver2igle pages will
measured cache capacity asid the stripe, or linesize, to test. map to each cache set, whekas the cache associativity.

For each cache level of sizethe test performs a parameter Two competing pages can occupy the cache simultaneously
sweep ovelL(n,s) for sizeof(void*) < s < pagesize+2. To if and only if: (1) one page contains pattern A and other
save time we limits to values that are powers of two, but thepage contains pattern B and (2) the stripe width is an integra
test works for anys within the given bounds. multiple of the effective linesize. Otherwise, the two page

L(n,s) generates two complementary striped access pattercanpflict with each another. (Note that it suffices to have some
A and B, depicted in Figure 6. Pattern A accesses the fitait not all, pages meet condition (1), because avoiding some
location in each of the even numbered stripes while pattezonflict misses will decrease the time below the baseline.jim
B accesses the first location in each of the odd numberedNe cannot, in a portable way, control the page mapping. We
stripes. The value o determines the width of each stripecan, however, draw random samples from a large set of pages
Both patterns are constructed to span the entire measuaed mappings to look for these conditions. The methodology
cache capacity, so the combined span is twice the measutteat we developed to run a reference string achieves thasteff
cache capacity. But, because each pattern only accesdes Ihal< linesize, then condition (2) never holds and the measured
of the stripes, the total data footprint is no larger than tHatency remains high. Fa@=linesize (or an integral multiple
cache capacity. The test accesses every location in patteffinesize), condition (2) always holds and condition (b)ds
A followed by every location in B, repeating until sufficientin some random samples. If the valu€elofals is large enough,
timing granularity has elapsed. The accesses within easdy 100, the test will find the desired mapping in some of its
pattern are shuffled to defeat a prefetcher. samples, which will produce the predicted decrease inmti

When patterns A and B both map to the same cache linés effect, our timing methodology samples over many possibl
they conflict. Fors<linesize, each access generates a misartual to physical mappings. Because it keeps the minimum
because both A and B access every line. Since the combiniedk, it finds large enough effects for the analysis to recgn
patterns span twice the measured cache capacity, the thetlinesize effect.
accesses twice the number of lines in the cache. @neaches o
an integral multiple of the linesize, patterns A and B no leng E- Associativity
conflict. Intuitively, each pattern has empty “holes” intbish Following X-RAY, our gap test detects associativity in the
the other pattern fits. The test starts with a small valus ofL1 cache, provided that it is virtually mapped [11]. The X-
and increases it until A and B do not conflict, at which poinRAY paper suggests the use of superpages to test associativity
the time to run the reference string drops dramatically. in higher cache levels. Because superpage support is not yet

Consider the one-word stripe at the top of Figure 6. Sing®rtable, we did not follow that path.
the linesize in this example is four words, A and B conflict. With effective sizes smaller than hardware limits and physi
The test uses the latency measured with the one-word strgag address mappings, it is not clear that the compiler cign re
as its baseline. Witls = 2, A and B still conflict, but spatial on associativity effects in caches at the and higher level.
locality decreases and run time increases. With4, A and B Thus, we do not measure associativity for caches ahave
map to different lines, so conflict misses disappear coralylet We have developed a straightforward test faB associa-
and the time to run the reference string drops dramaticallytivity based on the gap test. It functions well in most cabes,

The analysis portion of this test is straightforward. Meadu an architect can fool it. TherRM 926EJ-Shas a two-parrLB
latency increases relative to the baseline ascreases due to with an 8-page, fully-associative B and a 56-page, 2-way set
the decrease in spatial locality. As soon as the stripe widdissociativerLe. A TLB lookup first consults the smatiLg; a
is large enough to prevent conflict misses, measured latemaiss in the smalfrLB faults to the largemrLs. The TLB test

Fig. 6. Linesize micro-benchmark access pattern

finds both the 8-page and the 56-paga. The associativity results are unstable and fewer samples when the results are
test reports that botiLBs are 8-way set associative; we haveonsistent. It always collects at ledstals samples per point.
not been able to devise a reference string that exposes th&he first step in analysis filters the data to remove noise. Our

2-way associativity in the larger.s.3 filtering scheme leverages two observations. First, weragsu
that cache latency is an integral number of cycles, so weléivi
V. AUTOMATIC ANALYSIS the empirical latency by the measured latency of an integer

add and round to the nearest integer. For the sizes that fit in a

The cache-only andLB only micro-benchmarks produce he. all hould be hi 4 should. theref
piecewise linear functions that describe the processers £ache. all accesses should be hits and should, therefkecata
egral number of cycles. For sizes that include some rajsse

sponse, as shown in Figure 3. The tools use a multi—stﬁp

analysis to derive consistent and accurate capacities tham er'iotal latency is a|m|x of hits ar:jd mlsses.ler(])updlng toeycl
data. The analysis derives two key pieces of informatiomfro!" these transitional regions produces a slight inaccyrauty

a dataset: (1) the number of levels of cachecg and (2) the one that has minimal impact. As the data approaches the next

transition point between each levéle(, the capacity of each cache boundary, all the references are misses in the lowar le

level). The discussion uses data from the cache-only tat inc@che and the latency is, once again, accurate. _
examples. The same analysis is used onTite test data Second, we assume that the empirical results approximate an

The analysis isautomatic; it needs no human intervention.isomnic' or non-decreasing latency curve. We don't expect_the
Manual interpretation of the data is complex and subjecti\) fency to decrease when data fooiprint increases. Somgfim

The analysis uses mathematical optimization to find answe e empirical results contain non-isotonic data points.cake

.. . . i it essi i
The analysis isonservative. In the presence of amblguousrect these anomalies witisotone regression, which removes

results, it favors an underestimate rather than an ovaratd decrea_slngv\r/eglonsthfropm ? A%l.”ve \;V{t/h Iat for% of _me@fitze d
which might cause over-utilization of the cache. averaging. We use the Pool Adjacent Violators Algorithm|

The analysis igobust. Each step in the analysis has cleap. Determining the Number of Cache Levels
justification. It avoids arbitrary thresholds. Although wannot

prove that it draws perfect conclusions in the presence isyno
data, our thorough testing and analytical justificatiortséase
our confidence that it will at least produce reasonable arswi
It holds up experimentally (segVI).

The following sections describe the three steps of o
analysis: (1) filtering noise, (2) determining the number o
levels and (3) determining the capacity of each level.

Next, the analysis determines the number of levels in the
cache hierarchy. Because this step only determines thénroug
lobal structure of the curve, it can use aggressive smagthi
echniques, as long as they preserve the curve’'s important

features. The third step, finding transition points, carumss
lich aggressive smoothing as it may blur the transitions.
First, the analysis smoothes the curve with a Gaussian filter
The filter eliminates noise while preserving the curve’sbglo
shape. It uses a filter window whose width is derived from the
minimum distance that we expect between two cache levels.
Timing error is a major obstacle to correctly interpretingle assume that each cache level should be at least twice as
the micro-benchmark results. We cannot request single-ugge as the previous level; onlag, scale the appropriate
or real-time execution in a portable way; thus, the timingindow width islog,(2) = 1. With this window, the filter
results are likely to reflect transient events of tieeor daemon aggressively smoothes out noise between cache levels. It
processes. Our tools use a two pronged approach to minimgzgnot filter out an actual level unless it is less than twiee t
timing error: we reduce such errors during collection and W§ze of the previous level. The smoothed curve in the rigistmo
filter the data after collection to remove any remaining @oisgraph in Figure 7 shows the results of a Gaussian filter applie
Our timing methodology, introduced in Section IV-A, proto the cache-only data points in Figure 3.
vides the first-line defense against timing error. The testsNext, the analysis identifies regions in the curve that corre
perform multiple trials for each value in the parameter gweespond to levels in the cache. Informally, we expect to find
but only keep the smallest time. To prevent transient syste@latively flat regions of the curve that are surrounded by
events from affecting multiple trials of the same parameteloped regions. To detect such regions, the analysis casput
value, we sweep across the entire parameter space befpigne-dimensional density estimate along the y-axis, uaing
repeating for the next trial. Thus, any anomaly is spreadsacr fine-grained histogram. It splits the y-axis into a large bem
one trial at several parameter values rather than multijglist of adjacent bins and computes the number of points that fall
at the same value. The test tries each parameter value uptihe y-range of each bin. Intuitively, the bins for flat reqgs
it finds Trials consecutive attempts with no decrease in thgave much larger counts than bins for sloped regions. Thus, a
minimum value for that point; typicallyJrials=100. This cache levels is marked by a region of high density surrounded
adaptive approach collects more samples when the timipg regions of low density.

The fine-grained histogram, shown rotated sideways in Fig-
3The fact that we cannot, in portable code, discover the associativity \rg 7 provides a rough indication of the desired infornmatio
suggests that the architects made a good decision. Theyausetaller and Further smoothing with a Gaussian filter clarifies the region

presumably cheaper associativity precisely in a place evtier compiler could
neither see nor use the larger associativity. structure. The analysis derives the filter window width from

A. Filtering Timing Noise

Smoothed Fine-Grained

Histogram Histogram Cache-Only Results
128
Original
— Smoothed ———
& 64 FQ
o
e 32
o) -
& 16 ie
=
E —
s 8
4 I
0 0.0150.03 0.045 0 0.1 02030405 4KB 32KB 256KB 2MB 16MB
Frequency Frequency Data Footprint Size

Fig. 7. Histogram Analysis for Intel Xeon E5530 Nehalem, i@a©nly Reference Stream

the minimum expected magnitude of a transition betwednnction that selects for points that occur early in the ithon.
regions—that is, the minimum relative cost of a cache misé.models a step-function that steps upward at the tramsitio
We assume that a cache miss incurs at least a 25% performaraat between two levels. The number of steps should match
penalty; this step of the analysis considers anything leds®et the number of levels found by the second step in the analysis.
insignificant. That assumption implies that the window Wwijdt Thus, the analysis tries to minimize error between a step-
on alog, scale, should béog,(1.25) ~ 0.322. function approximation and the original (unsmoothed) data
With this filter window width, the Gaussian filter consol- The analysis employs a dynamic programming algorithm,
idates the adjacent bins and produces a smooth curve witised on extending Perez’s polygonal approximation algo-
clear maxima and minima. The leftmost graph in Figure fithm [13] to a step-function approximation. While the com-
depicts the smoothed histogram. The final step counts thlexity of this algorithm is© (M N?), whereM is the number
number of local maxima in the curve by computing theflevels cache and/ is the number of data points, the running
slope of the smoothed histogram. Local maxima correspondtime is not a practical problem. The values fof and N are
points where the first derivative changes from non-negativesmall and the total cost of analysis is insignificant retio
negative. This simple algorithm detects the peaks in the htbe cost of gathering the data.
togram, indicated by the circles on the peaks of the smoothed-igure 8 shows the result of the step-function approxinmatio
histogram. Each peak corresponds to a distinct level in tba the original data. Smoothing would alter the transition
memory hierarchy. If the analysis findspeaks, that indicates points. The first three steps representithg 2, andL3 caches.
n — 1 levels of cache, plus main memory. This step conclud@$e right endpoint of a step indicates that level's capagite

by returning the number of levels in the cache. height of a step indicates its worst-case latency. Althotingh
L2 andL3 transitions are gradual in the data, the approximation
C. Determining the Size of the Cache Levels conservatively identifies the start of the slope as the #ifec

The final analysis step finds the transition points betwe&ACN€ Size. A more gentle slope might cause the algorithm to
levels in the curve—the points where latency begins to riSglect a larger effective size with a slightly longer lagenc

because the cache is effectively full. This section presant The transition_ points are chpsen to minimize the error of
intuitive algorithm to find objectively the optimal points t € Step-function approximation. The rightmost step in the

split the curve, given the number of levels in the cache. approximation corresponds to main memory and indicates the

Interpreting the cache-latency curve is somewhat subjecti MiSS Penalty for the-3 cache.
as it entails a judgment call with regard to the capacitgfiay VI. EXPERIMENTAL VALIDATION
tradeoff. The ideal curve would resemble a step functioth wi] .)
long, flat regions connected by short steep transitions.u@h s 10 Validate our techniques, we run them on a collection of
a curve, cache capacity is easily determined as the finat poStéms that range from commoditgé processors through

before the rise in latency. However, modern processors show

soft response curves that rise well before the hardwareecach . 128 F——— oricinal . T
boundary, at least on the higher levels of cache. Some prgvio % 64 1 Approximgtion —]
approaches try to estimate hardware cache capacity from the & 32 r 1 1]
shape of the latency curve. In contrast, our analysis finds 3 16]
a number that makes sense for compiler-based blocking of & 8¢]
memory accesses. That number, #ffective cache capacity, 3 41 e e e e et s g
corresponds to the point at which access latency startseo ri 2 39KB 256KB 8MB
The analysis identifies the largest point in a flat region ef th Data Footprint Size

curve. Unfortunately, “flat” is subjective if the transititbegins
with a gradual slope. Thus, the analysis uses an objectiverig. 8. Step-Function Approximation for Intel Xeon E5530Hdem

Processor Linesize in Bytes Associativity Capacity in KB Latency in Cycles
Actual | Measured | Actual | Measured | Actual | Measured Measured

1 64 64 2 2 64 64 3

AMD Opteron 2360 SE Barcelona 2 64 64 16 512 448 12

3 64 64 32 2048 1792 46

1 64 64 2 2 64 64 3

AMD Opteron 275 2 64 64 16 1024 896 17

1 64 64 2 2 64 64 3

AMD Opteron 6168 Magny-Courg 2 64 64 512 512 13

3 64 64 12288 5120 32

1 64 64 2 2 64 64 3

AMD Phenom 9750 Agena 2 64 64 16 512 448 12

3 64 64 32 2048 2048 31

1 32 32 4 4 16 16 2

ARMIZ6EJ-S 2 32 32 2 256 224 15

1 128 128 ? 4 32 32 2

IBM Cell (PS3) 2| 128 128 2 512 320 20

1 128 128 8 8 32 32 1

2 128 128 8 256 256 6

IBM POWER7 3 128 256 ? 32768 3072 15

4 256 20480 51

1 64 64 8 8 32 32 3

Intel Core 2 Duo T5600 Merom > 64 128 8 2048 1280 14

1 64 64 4 4 16 16 2

Intel Itanium 2 900 McKinley 2 128 128 256 256 6

3 128 128 1536 1024 18

1 64 64 4 4 16 16 2

Intel ltanium 2 9040 Montecito 2 128 128 8 256 256 6

3 128 128 12 12288 4096 11

Intel Pentium 4 1 64 o4 4 4 8 8 4

2 64 128 512 256 36

1 64 64 8 8 32 32 3

Intel Xeon E5420 Harpertown > 64 128 24 6144 4096 15

1 64 64 8 8 32 32 3

Intel Xeon E5440 Harpertown > 64 64 24 6144 4096 15

1 64 64 8 8 32 32 4

Intel Xeon E5530 Nehalem 2 64 64 8 256 224 10

3 64 64 16 8192 5120 19

. 1 64 64 8 8 32 32 3

Intel Xeon E7330 Tigerton > 64 128 12 3072 1792 14

. 1 64 64 8 8 32 32 3

Intel Xeon X3220 Kentsfield > 64 64 4096 2560 15

1 64 64 8 8 32 32 4

Intel Xeon X5660 Westmere 2 64 64 8 256 224 10

3 64 64 16 12288 8192 22

1 32 32 8 8 32 32 3

PowerPC 7455 G4 2 64 64 8 256 224 10

3 128 128 8 2048 1536 32

1 32 32 8 8 32 32 2

PowerPC 750 G3 2| 128 128 2 1024 512 20

1 16 16 4 4 8 8 4

Sun UlraSPARC T1 2 64 64 12 3072 3072 23

TABLE |

CACHE RESULTS

an IBM POWERY7, an ARM, and thelBM Cell processor in a do not measure that value (e.g§2 cache associativity). The
Sony Playstation 3. All of these systems run some flavor #ttual column lists the documented number for that processor,
Unix and support enough of theoBix interface for our tools. if available. Table Il shows the capacity numbers faBs on

Table | shows the measured cache parameters: linesi same systems. We do not show pagesize numbers in the

associativity, capacity, and latency for each level of eatttat table; they are available from theoBix syscont call.

the tools detect. ThéMeasured column shows the numbers The tables are produced by a script that distributes the,code
produced by the tools. Capacities were produced by the eachsesnake to compile and execute it, and retrieves the results.
only test; the gap test agrees with it on each system we haweo of the systems use batch queues; those systems require
tested. A blank in thévleasured column means that the toolsmanual intervention to schedule the job and retrieve thatses

Processor Capacity in KB Intel T5600, Pentium4, Intel E540, and the Intel E7330, the

- ACtlug"z Meas”{g% tools detect a largeeffective linesize for the last level of
AMD Opteron 2360 SE Barcelona 5 |, g 2048 cache. While it is possible that the documentation is irescirr
1 178 178 it seems more likely that the test exposes behavior of the
AMD Opteron 275 2| 2048 2048 hardware prefetcher or the memory controller. Again, these
AMD Opteron 6168 Magny-Cours % 2%3% 2%3223 examples reinforce the need to determine s_uch parameters
- — — experimentally rather than rely on documentation.
AMD Phenom 9750 Agena > | 2048 2048 Effective Cache Sizes The tests measure effective cache size
1 256 32 rather than the actual cache size. The discovered effesiiee
ARM926EJ-S . . .
2 224 is typically smaller than actual size. Fo2 cache and beyond,
IBM Cell (PS3) % Z 4%32 effective size can be as small as 50-75% of actual size. For
_ L1 caches, effective size matched actual size on each system.
1 4096 4096
IBM POWER7 > 5 37768
T 64 54 VII. CONCLUSION
Intel Core 2 Duo T5600 Merom . . .
2| 1024 1024 This paper presents techniques to measure the effective
Intel Itanium 2 900 McKinley % gggg 7680 sizes of levels in a processor's cache and hierarchy.
: : T =10 1970 The tools are portable; they rely on @ compiler and the
Intel Itanium 2 9040 Montecito | 5 | 5000 POsIX osinterfaces. The tools discover effective cache and
Intel Pentium 4 1 256 256 TLB sizes that are suitable for use in memory-hierarchy
Intel Xeon E5420 Harpertown % 1021 1021 optimizations; in fact, these effective numbers ;hould/m
: o - better optimization results than would be obtained usirgy th
Intel Xeon E5440 Harpertown > 1024 1024 actual hardware values from the manufacturer’s manual. The
1 256 256 tools will be available in open source form (befospAss.
Intel Xeon E5530 Nehalem 2| 2048 2048 We are pursuing two extensions of this work. The first
Intel Xeon E7330 Tigerton % 1021 1021 will use the m_icro-benc_hmarks described in this paper to
measure effective capacity when other cores are loaded. The
) 1 64 64 . .
Intel Xeon X3220 Kentsfield 5| 1024 1024 experiments will run a known memory load on all but one
1 256 256 core, while measuring cache size on the final core. The
Intel Xeon X5660 Westmere 2| 2048 2048 second project will explore in more detail the reasons fer th
PowerPC 7455 G4 % 012 1%% discrepancy between effective and physical cache sizes.
PowerPC 750 G3 % 512 12;% VIII. A CKNOWLEDGMENTS
Sun UliraSPARC T1 T 512 3840 This work was performed as part of thendE Project,
TABLE I a Darpra-sponsored project funded throughrFRL Con-
TLB RESULTS tract FA8650-09-C-7915. Thomas Barr, Tim Harvey, Arnold

Schwaighofer, Ray Simar, and Linda Torczon all contributed
to this work, as did researchers in the othexRPA AACE
projects. All of these people provided constructive cistic,

deep technical discussions, and encouragement. We owe them
all a debt of thanks.

A couple of entries deserve specific attention. P@WER7
has an unusual3 cache structure. Eight cores share avg2
L3 cache; each core has a8 portion of that cache that it can
access faster than the remaining¥8 The cache-only test
discovers two distinct latencies: a® cache with a 15 cycle
latency and a larger 208 cache with a 51 cycle latency. Our REFERENCES
tests were run o_n an active system; T[he effective SIZQS l’efle[(i] C.-K. Luk and T. C. Mowry, “Architectural and compiler gport for
the actual behavior that a program might see. A compiler that' effective instruction prefetching: a cooperative apphjadCM Trans.
blocks for POWER7caches would do better to use the tool's ~ Comput. Syst., vol. 19, no. 1, pp. 71-109, 2001.

. ; s [2] S. A. Moyer, “Performance of the IPSC/860 Node Architeet” Uni-
descrlptlon than to treat it as a unified @8 L3 cache. versity of Virginia, Charlottesville, VA, USA, Tech. Red991.

As discussed in§IV-E, the TLB on the ARM 926EJ-S [3] A. Qasem and K. Kennedy, “Profitable loop fusion and glinsing
generates a result that differs from the hardware desonipti model-driven empirical search,” ifCS '06: Proceedings of the 20th

; ;) annual international conference on Supercomputing. New York, NY,
Again, a compiler would do well to use the tools’ result rathe g ° ACM, 2006, pp. 249-258.

than the description from the manuals. [4] J. Dongarra, S. Moore, P. Mucci, K. Seymour, and H. Yougc¢arate

Several of our systems have cache designs that use different cache and tib characterization using hardware counter$}fdceedings
of the International Conference on Computational Science (ICCS), 2004,

linesizes for different levels of cache. The ItaniungviPERP C pp. 432-439.
G3, and Sun T1 all use a smaller linesize farand a larger [5] A. X. Duchateau, A. Sidelnik, M. J. Garzaran, and D. PadiP-ray: A
linesize for higher levels of the cache. Th®WeERPC G4 software suite for multi-core architecture charactergt Languages

h diff i . f hi | of he. The i . and Compilers for Parallel Computing: 21th International Workshop,
as a different linesize for each level of cache. e lIesIZ | cpc 2008, Edmonton, Canada, July 31 - August 2, 2008, Revised

test detects the correct linesize in each case. ORGWER7? Selected Papers, pp. 187-201, 2008.

(6]

(7]

(8]

[0

[10]
[11]

[12]

(23]

J. Gonzalez-Dominguez, G. L. Taboada, B. B. Fragukla,). Martin,
and J. Tourifio, “Servet: A benchmark suite for autotunimgnaulticore
clusters,” in24th |EEE International Parallel and Distributed Processing
Symposium (IPDPS 10), Atlanta, GA, USA, April 2010.

L. McVoy and C. Staelin, “Imbench: Portable tools for ftgmance anal-
ysis,” in Proceedings of the USENIX 1996 Annual Technical Conference,
San Diego, California, January 1996.

R. H. Saavedra and A. J. Smith, “Measuring cache and ttlopeance
and their effect on benchmark runtime&ZEE Trans. Comput., vol. 44,
no. 10, pp. 1223-1235, 1995.

K. Yotov, K. Pingali, and P. Stodghill, “X-ray: A tool forautomatic
measurement of hardware parameters,"QBST '05: Proceedings of
the Second International Conference on the Quantitative Evaluation of
Systems, Washington, DC, USA, 2005, p. 168.

“Omitted for blind review,” Reference will appear in full paper.

K. Yotov, K. Pingali, and P. Stodghill, “Automatic meagment of mem-
ory hierarchy parameters8GMETRICS Perform. Eval. Rev., vol. 33,
no. 1, pp. 181-192, 2005.

T. Robertson, F. Wright, and R. Dykstr@rder Restricted Satistical
Inference. John Wiley @ Sons Ltd., 1988.

J.-C. Perez and E. Vidal, “Optimum polygonal approxiiom of digi-
tized curves,"Pattern Recogn. Lett., vol. 15, no. 8, pp. 743-750, 1994.

